#version 420 core #include #define LIGHTING_TYPE (LIGHTING_TYPE_TRANSMISSION | LIGHTING_TYPE_REFLECTION) #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_SPECULAR #if (FLUID_MODE == FLUID_MODE_CHEAP) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #elif (FLUID_MODE == FLUID_MODE_SHINY) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE #endif #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN #include // Note: The sampler uniform is declared here because it differs for MSAA #include #include #include #include layout(set = 1, binding = 0) uniform texture2D t_src_color; layout(set = 1, binding = 1) uniform sampler s_src_color; layout(location = 0) in vec2 uv; layout (std140, set = 1, binding = 2) uniform u_locals { mat4 proj_mat_inv; mat4 view_mat_inv; }; #ifdef BLOOM_FACTOR layout(set = 1, binding = 3) uniform texture2D t_src_bloom; #endif layout(location = 0) out vec4 tgt_color; vec3 rgb2hsv(vec3 c) { vec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0); vec4 p = mix(vec4(c.bg, K.wz), vec4(c.gb, K.xy), step(c.b, c.g)); vec4 q = mix(vec4(p.xyw, c.r), vec4(c.r, p.yzx), step(p.x, c.r)); float d = q.x - min(q.w, q.y); float e = 1.0e-10; return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x); } vec3 hsv2rgb(vec3 c) { vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0); vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www); return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y); } vec3 _illuminate(float max_light, vec3 view_dir, /*vec3 max_light, */vec3 emitted, vec3 reflected) { const float NIGHT_EXPOSURE = 10.0; const float DUSK_EXPOSURE = 2.0;//0.8; const float DAY_EXPOSURE = 1.0;//0.7; const float DAY_SATURATION = 1.0; const float DUSK_SATURATION = 0.6; const float NIGHT_SATURATION = 0.1; const float gamma = /*0.5*//*1.*0*/1.0;//1.0; /* float light = length(emitted + reflected); float color = srgb_to_linear(emitted + reflected); float avg_col = (color.r + color.g + color.b) / 3.0; return ((color - avg_col) * light + reflected * avg_col) * (emitted + reflected); */ // float max_intensity = vec3(1.0); vec3 color = emitted + reflected; float lum = rel_luminance(color); // float lum_sky = lum - max_light; // vec3 sun_dir = get_sun_dir(time_of_day.x); // vec3 moon_dir = get_moon_dir(time_of_day.x); // float sky_light = rel_luminance( // get_sun_color(sun_dir) * get_sun_brightness(sun_dir) * SUN_COLOR_FACTOR + // get_moon_color(moon_dir) * get_moon_brightness(moon_dir)); float sky_light = lum; // Tone mapped value. // vec3 T = /*color*//*lum*/color;//normalize(color) * lum / (1.0 + lum); // float alpha = 0.5;//2.0; // float alpha = mix( // mix( // DUSK_EXPOSURE, // NIGHT_EXPOSURE, // max(sun_dir.z, 0) // ), // DAY_EXPOSURE, // max(-sun_dir.z, 0) // ); float alpha = 1.0;//log(1.0 - lum) / lum; // vec3 now_light = moon_dir.z < 0 ? moon_dir : sun_dir; // float cos_view_light = dot(-now_light, view_dir); // alpha *= exp(1.0 - cos_view_light); // sky_light *= 1.0 - log(1.0 + view_dir.z); float alph = sky_light > 0.0 && max_light > 0.0 ? mix(1.0 / log(/*1.0*//*1.0 + *//*lum_sky + */1.0 + max_light / (0.0 + sky_light)), 1.0, clamp(max_light - sky_light, 0.0, 1.0)) : 1.0; alpha = alpha * alph;// min(alph, 1.0);//((max_light > 0.0 && max_light > sky_light /* && sky_light > 0.0*/) ? /*1.0*/1.0 / log(/*1.0*//*1.0 + *//*lum_sky + */1.0 + max_light - (0.0 + sky_light)) : 1.0); // alpha = alpha * min(1.0, (max_light == 0.0 ? 1.0 : (1.0 + abs(lum_sky)) / /*(1.0 + max_light)*/max_light)); vec3 col_adjusted = lum == 0.0 ? vec3(0.0) : color / lum; // float L = lum == 0.0 ? 0.0 : log(lum); // // float B = T; // // float B = L + log(alpha); // float B = lum; // float D = L - B; // float o = 0.0;//log(PERSISTENT_AMBIANCE); // float scale = /*-alpha*/-alpha;//1.0; // float B_ = (B - o) * scale; // // float T = lum; // float O = exp(B_ + D); float T = 1.0 - exp(-alpha * lum);//lum / (1.0 + lum); // float T = lum; // Heuristic desaturation // const float s = 0.8; float s = 1.0; // float s = mix( // mix( // DUSK_SATURATION, // NIGHT_SATURATION, // max(sun_dir.z, 0) // ), // DAY_SATURATION, // max(-sun_dir.z, 0) // ); // s = max(s, (max_light) / (1.0 + s)); // s = max(s, max_light / (1.0 + max_light)); // s = max_light / (1.0 + max_light); vec3 c = pow(col_adjusted, vec3(s)) * T; // vec3 c = col_adjusted * T; // vec3 c = sqrt(col_adjusted) * T; // vec3 c = /*col_adjusted * */col_adjusted * T; return c; // float sum_col = color.r + color.g + color.b; // return /*srgb_to_linear*/(/*0.5*//*0.125 * */vec3(pow(color.x, gamma), pow(color.y, gamma), pow(color.z, gamma))); } #ifdef EXPERIMENTAL_SOBEL vec3 aa_sample(vec2 uv, vec2 off) { return aa_apply(t_src_color, s_src_color, uv * screen_res.xy + off, screen_res.xy).rgb; } #endif void main() { /* if (medium.x == 1u) { uv = clamp(uv + vec2(sin(uv.y * 16.0 + tick.x), sin(uv.x * 24.0 + tick.x)) * 0.005, 0, 1); } */ vec2 c_uv = vec2(0.5);//uv;//vec2(0.5);//uv; vec2 delta = /*sqrt*//*sqrt(2.0) / 2.0*//*sqrt(2.0) / 2.0*//*0.5 - */min(uv, 1.0 - uv);//min(uv * (1.0 - uv), 0.25) * 2.0; // delta = /*sqrt(2.0) / 2.0 - */sqrt(vec2(dot(delta, delta))); // delta = 0.5 - vec2(min(delta.x, delta.y)); delta = vec2(0.25);//vec2(dot(/*0.5 - */delta, /*0.5 - */delta));//vec2(min(delta.x, delta.y));//sqrt(2.0) * (0.5 - vec2(min(delta.x, delta.y))); // delta = vec2(sqrt(dot(delta, delta))); // vec2 delta = /*sqrt*//*sqrt(2.0) / 2.0*//*sqrt(2.0) / 2.0*/1.0 - vec2(sqrt(dot(uv, 1.0 - uv)));//min(uv * (1.0 - uv), 0.25) * 2.0; // float delta = /*sqrt*//*sqrt(2.0) / 2.0*//*sqrt(2.0) / 2.0*/1.0 - (dot(uv - 0.5, uv - 0.5));//0.01;//25; // vec2 delta = /*sqrt*//*sqrt(2.0) / 2.0*//*sqrt(2.0) / 2.0*/sqrt(uv * (1.0 - uv));//min(uv * (1.0 - uv), 0.25) * 2.0; // float bright_color0 = rel_luminance(texelFetch/*texture*/(src_color, ivec2(clamp(c_uv + vec2(0.0, 0.0), 0.0, 1.0) * screen_res.xy/* / 50*/)/* * 50*/, 0).rgb); // float bright_color1 = rel_luminance(texelFetch/*texture*/(src_color, ivec2(clamp(c_uv + vec2(delta.x, delta.y), 0.0, 1.0) * screen_res.xy/* / 50*/)/* * 50*/, 0).rgb); // float bright_color2 = rel_luminance(texelFetch/*texture*/(src_color, ivec2(clamp(c_uv + vec2(delta.x, -delta.y), 0.0, 1.0) * screen_res.xy/* / 50*/)/* * 50*/, 0).rgb); // float bright_color3 = rel_luminance(texelFetch/*texture*/(src_color, ivec2(clamp(c_uv + vec2(-delta.x, delta.y), 0.0, 1.0) * screen_res.xy/* / 50*/)/* * 50*/, 0).rgb); // float bright_color4 = rel_luminance(texelFetch/*texture*/(src_color, ivec2(clamp(c_uv + vec2(-delta.x, -delta.y), 0.0, 1.0) * screen_res.xy/* / 50*/)/* * 50*/, 0).rgb); // float bright_color0 = rel_luminance(texture(src_color, /*ivec2*/(clamp(c_uv + vec2(0.0, 0.0), 0.0, 1.0)/* * screen_res.xy*//* / 50*/)/* * 50*/, 0).rgb); // float bright_color1 = rel_luminance(texture(src_color, /*ivec2*/(clamp(c_uv + vec2(delta, delta), 0.0, 1.0)/* * screen_res.xy*//* / 50*/)/* * 50*/, 0).rgb); // float bright_color2 = rel_luminance(texture(src_color, /*ivec2*/(clamp(c_uv + vec2(delta, -delta), 0.0, 1.0)/* * screen_res.xy*//* / 50*/)/* * 50*/, 0).rgb); // float bright_color3 = rel_luminance(texture(src_color, /*ivec2*/(clamp(c_uv + vec2(-delta, delta), 0.0, 1.0)/* * screen_res.xy*//* / 50*/)/* * 50*/, 0).rgb); // float bright_color4 = rel_luminance(texture(src_color, /*ivec2*/(clamp(c_uv + vec2(-delta, -delta), 0.0, 1.0)/* * screen_res.xy*//* / 50*/)/* * 50*/, 0).rgb); // float bright_color = max(bright_color0, max(bright_color1, max(bright_color2, max(bright_color3, bright_color4))));// / 2.0;// / 5.0; // float bright_color = (bright_color0 + bright_color1 + bright_color2 + bright_color3 + bright_color4) / 5.0; // TODO: this causes flickering when the camera is moving into and out of solid blocks, resolve before uncommenting // if (medium.x == 2u) { // tgt_color = vec4(0, 0.005, 0.01, 1) * (1 + hash_fast(uvec3(vec3(uv * screen_res.xy / 32.0, 0)))); // return; // } vec2 sample_uv = uv; #ifdef EXPERIMENTAL_UNDERWARPER if (medium.x == MEDIUM_WATER) { sample_uv += sin(uv.yx * 40 + tick.xx * 1.0) * 0.003; } #endif vec4 aa_color = aa_apply(t_src_color, s_src_color, sample_uv * screen_res.xy, screen_res.xy); #ifdef EXPERIMENTAL_SOBEL vec3 s[8]; s[0] = aa_sample(uv, vec2(-1, 1)); s[1] = aa_sample(uv, vec2( 0, 1)); s[2] = aa_sample(uv, vec2( 1, 1)); s[3] = aa_sample(uv, vec2(-1, 0)); s[4] = aa_sample(uv, vec2( 1, 0)); s[5] = aa_sample(uv, vec2(-1, -1)); s[6] = aa_sample(uv, vec2( 0, -1)); s[7] = aa_sample(uv, vec2( 1, -1)); vec3 gx = s[0] + s[3] * 2.0 + s[5] - s[2] - s[4] * 2 - s[7]; vec3 gy = s[0] + s[1] * 2.0 + s[2] - s[5] - s[6] * 2 - s[7]; float mag = length(gx) + length(gy); aa_color.rgb = mix(vec3(0.9), aa_color.rgb * 0.8, clamp(1.0 - mag * 0.3, 0.0, 1.0)); #endif // Bloom #ifdef BLOOM_FACTOR vec4 bloom = textureLod(sampler2D(t_src_bloom, s_src_color), uv, 0); #if (BLOOM_UNIFORM_BLUR == false) // divide by 4.0 to account for adding blurred layers together bloom /= 4.0; #endif aa_color = mix(aa_color, bloom, BLOOM_FACTOR); #endif // Tonemapping float exposure_offset = 1.0; // Adding an in-code offset to gamma and exposure let us have more precise control over the game's look float gamma_offset = 0.3; aa_color.rgb = vec3(1.0) - exp(-aa_color.rgb * (gamma_exposure.y + exposure_offset)); // gamma correction aa_color.rgb = pow(aa_color.rgb, vec3(gamma_exposure.x + gamma_offset)); /* // Apply clouds to `aa_color` #if (CLOUD_MODE != CLOUD_MODE_NONE) vec3 wpos = wpos_at(uv); float dist = distance(wpos, cam_pos.xyz); vec3 dir = (wpos - cam_pos.xyz) / dist; aa_color.rgb = get_cloud_color(aa_color.rgb, dir, cam_pos.xyz, time_of_day.x, dist, 1.0); #endif */ // aa_color.rgb = (wpos + focus_off.xyz) / vec3(32768, 32768, /*view_distance.w*/2048); // aa_color.rgb = mod((wpos + focus_off.xyz), vec3(32768, 32768, view_distance.w)) / vec3(32768, 32768, view_distance.w);// / vec3(32768, 32768, view_distance.w); // aa_color.rgb = mod((wpos + focus_off.xyz), vec3(32, 32, 16)) / vec3(32, 32, 16);// / vec3(32768, 32768, view_distance.w); // aa_color.rgb = focus_off.xyz / vec3(32768, 32768, view_distance.w); /* aa_color.rgb = wpos / 10000.0; */ /* aa_color.rgb = vec3((texture(src_depth, uv).x - 0.99) * 100.0); */ /* aa_color.rgb = vec3((dist - 100000) / 300000.0, 1, 1); */ /* vec3 scatter_color = get_sun_color() * get_sun_brightness() + get_moon_color() * get_moon_brightness(); */ /* aa_color.rgb += cloud_color.rgb * scatter_color;//mix(aa_color, vec4(cloud_color.rgb * scatter_color, 1), cloud_color.a); */ // aa_color.rgb = illuminate(1.0 - 1.0 / (1.0 + bright_color), normalize(cam_pos.xyz - focus_pos.xyz), /*vec3 max_light, */vec3(0.0), aa_color.rgb); //vec4 hsva_color = vec4(rgb2hsv(fxaa_color.rgb), fxaa_color.a); //hsva_color.y *= 1.45; //hsva_color.z *= 0.85; //hsva_color.z = 1.0 - 1.0 / (1.0 * hsva_color.z + 1.0); //vec4 final_color = vec4(hsv2rgb(hsva_color.rgb), hsva_color.a); vec4 final_color = aa_color; #if (FLUID_MODE == FLUID_MODE_CHEAP) if (medium.x == MEDIUM_WATER) { final_color *= vec4(0.2, 0.2, 0.8, 1.0); } #endif #ifndef EXPERIMENTAL_NODITHER // Add a small amount of very cheap dithering noise to remove banding from gradients // TODO: Consider dithering each color channel independently. // TODO: Consider varying dither over time. // TODO: Instead of 255, detect the colour resolution of the color attachment float noise = hash_two(uvec2(uv * screen_res.xy)); #ifndef EXPERIMENTAL_NONSRGBDITHER #ifndef EXPERIMENTAL_TRIANGLENOISEDITHER noise = noise - 0.5; #else // TODO: there is something special we have to do to remove bias // on the bounds when using triangle distribution noise = 2.0 * norm2tri(noise) - 1.0; #endif final_color.rgb = srgb_to_linear(linear_to_srgb(final_color.rgb) + noise / 255.0); #else // NOTE: GPU will clamp value final_color.rgb = final_color.rgb - noise / 255.0; #endif #endif tgt_color = vec4(final_color.rgb, 1); }