// Standard use std::{collections::HashMap, sync::mpsc, time::Duration}; // Library use vek::*; // Project use client::Client; use common::{terrain::TerrainMap, vol::SampleVol, volumes::vol_map::VolMapErr}; // Crate use crate::{ mesh::Meshable, render::{Consts, Globals, Mesh, Model, Renderer, TerrainLocals, TerrainPipeline}, }; struct TerrainChunk { // GPU data model: Model, locals: Consts, } struct ChunkMeshState { pos: Vec3, started_tick: u64, active_worker: bool, } /// A type produced by mesh worker threads corresponding to the position and mesh of a chunk struct MeshWorkerResponse { pos: Vec3, mesh: Mesh, started_tick: u64, } /// Function executed by worker threads dedicated to chunk meshing fn mesh_worker( pos: Vec3, started_tick: u64, volume: ::Sample, supplement: Aabb, ) -> MeshWorkerResponse { MeshWorkerResponse { pos, mesh: volume.generate_mesh(supplement), started_tick, } } pub struct Terrain { chunks: HashMap, TerrainChunk>, // The mpsc sender and receiver used for talking to meshing worker threads. // We keep the sender component for no reason othe than to clone it and send it to new workers. mesh_send_tmp: mpsc::Sender, mesh_recv: mpsc::Receiver, mesh_todo: HashMap, ChunkMeshState>, } impl Terrain { pub fn new() -> Self { // Create a new mpsc (Multiple Produced, Single Consumer) pair for communicating with // worker threads that are meshing chunks. let (send, recv) = mpsc::channel(); Self { chunks: HashMap::new(), mesh_send_tmp: send, mesh_recv: recv, mesh_todo: HashMap::new(), } } /// Maintain terrain data. To be called once per tick. pub fn maintain(&mut self, renderer: &mut Renderer, client: &Client) { let current_tick = client.get_tick(); // Add any recently created or changed chunks to the list of chunks to be meshed for pos in client .state() .changes() .new_chunks .iter() .chain(client.state().changes().changed_chunks.iter()) { // TODO: ANOTHER PROBLEM HERE! // What happens if the block on the edge of a chunk gets modified? We need to spawn // a mesh worker to remesh its neighbour(s) too since their ambient occlusion and face // elision information changes too! for i in -1..2 { for j in -1..2 { for k in -1..2 { let pos = pos + Vec3::new(i, j, k); if client.state().terrain().get_key(pos).is_some() { // re-mesh loaded chunks that border new/changed chunks if self.chunks.contains_key(&pos) || (i, j, k) == (0, 0, 0) { self.mesh_todo.entry(pos).or_insert(ChunkMeshState { pos, started_tick: current_tick, active_worker: false, }); } } } } } } // Remove any models for chunks that have been recently removed for pos in &client.state().changes().removed_chunks { self.chunks.remove(pos); self.mesh_todo.remove(pos); } for todo in self .mesh_todo .values_mut() // Only spawn workers for meshing jobs without an active worker already .filter(|todo| !todo.active_worker) { // Find the area of the terrain we want. Because meshing needs to compute things like // ambient occlusion and edge elision, we also need to borders of the chunk's // neighbours too (hence the `- 1` and `+ 1`). let aabb = Aabb { min: todo .pos .map2(TerrainMap::chunk_size(), |e, sz| e * sz as i32 - 1), max: todo .pos .map2(TerrainMap::chunk_size(), |e, sz| (e + 1) * sz as i32 + 1), }; // Copy out the chunk data we need to perform the meshing. We do this by taking a // sample of the terrain that includes both the chunk we want and let volume = match client.state().terrain().sample(aabb) { Ok(sample) => sample, // If either this chunk or its neighbours doesn't yet exist, so we keep it in the // todo queue to be processed at a later date when we have its neighbours. Err(VolMapErr::NoSuchChunk) => return, _ => panic!("Unhandled edge case"), }; // Clone various things to that they can be moved into the thread let send = self.mesh_send_tmp.clone(); let pos = todo.pos; // Queue the worker thread client.thread_pool().execute(move || { send.send(mesh_worker(pos, current_tick, volume, aabb)) .expect("Failed to send chunk mesh to main thread"); }); todo.active_worker = true; } // Receive a chunk mesh from a worker thread, upload it to the GPU and then store it // Only pull out one chunk per frame to avoid an unacceptable amount of blocking lag due // to the GPU upload. That still gives us a 60 chunks / second budget to play with. if let Ok(response) = self.mesh_recv.recv_timeout(Duration::new(0, 0)) { match self.mesh_todo.get(&response.pos) { // It's the mesh we want, insert the newly finished model into the terrain model // data structure (convert the mesh to a model first of course) Some(todo) if response.started_tick == todo.started_tick => { self.chunks.insert( response.pos, TerrainChunk { model: renderer .create_model(&response.mesh) .expect("Failed to upload chunk mesh to the GPU"), locals: renderer .create_consts(&[TerrainLocals { model_offs: response .pos .map2(TerrainMap::chunk_size(), |e, sz| { e as f32 * sz as f32 }) .into_array(), }]) .expect("Failed to upload chunk locals to the GPU"), }, ); } // Chunk must have been removed, or it was spawned on an old tick. Drop the mesh // since it's either out of date or no longer needed _ => {} } } } pub fn render(&self, renderer: &mut Renderer, globals: &Consts) { for (_, chunk) in &self.chunks { renderer.render_terrain_chunk(&chunk.model, globals, &chunk.locals); } } }