#version 420 core #define FIGURE_SHADER #include #define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY #if (FLUID_MODE == FLUID_MODE_LOW) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #elif (FLUID_MODE >= FLUID_MODE_MEDIUM) #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_RADIANCE #endif #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN #define HAS_SHADOW_MAPS #include #include #include #include layout(location = 0) in vec3 f_pos; // in float dummy; // in vec3 f_col; // in float f_ao; // flat in uint f_pos_norm; layout(location = 1) flat in vec3 f_norm; /*centroid */layout(location = 2) in vec2 f_uv_pos; layout(location = 3) in vec3 m_pos; layout(location = 4) in float scale; // in float f_alt; // in vec4 f_shadow; // in vec3 light_pos[2]; // #if (SHADOW_MODE == SHADOW_MODE_MAP) // in vec4 sun_pos; // #elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE) // const vec4 sun_pos = vec4(0.0); // #endif layout(set = 2, binding = 0) uniform texture2D t_col_light; layout(set = 2, binding = 1) uniform sampler s_col_light; //struct ShadowLocals { // mat4 shadowMatrices; // mat4 texture_mat; //}; // //layout (std140) //uniform u_light_shadows { // ShadowLocals shadowMats[/*MAX_LAYER_FACES*/192]; //}; layout (std140, set = 3, binding = 0) uniform u_locals { mat4 model_mat; vec4 highlight_col; vec4 model_light; vec4 model_glow; ivec4 atlas_offs; vec3 model_pos; // bit 0 - is player // bit 1-31 - unused int flags; }; struct BoneData { mat4 bone_mat; mat4 normals_mat; }; layout (std140, set = 3, binding = 1) uniform u_bones { BoneData bones[16]; }; layout(location = 0) out vec4 tgt_color; layout(location = 1) out uvec4 tgt_mat; void main() { // vec2 texSize = textureSize(t_col_light, 0); // vec4 col_light = texture(t_col_light, (f_uv_pos + 0.5) / texSize); // vec3 f_col = col_light.rgb; // float f_ao = col_light.a; // vec4 f_col_light = texture(t_col_light, (f_uv_pos + 0.5) / textureSize(t_col_light, 0)); // vec3 f_col = f_col_light.rgb; // float f_ao = f_col_light.a; float f_ao; uint material = 0xFFu; vec3 f_col = greedy_extract_col_light_figure(t_col_light, s_col_light, f_uv_pos, f_ao, material); #ifdef EXPERIMENTAL_BAREMINIMUM tgt_color = vec4(simple_lighting(f_pos.xyz, f_col, f_ao), 1); return; #endif // float /*f_light*/f_ao = textureProj(t_col_light, vec3(f_uv_pos, texSize)).a;//1.0;//f_col_light.a * 4.0;// f_light = float(v_col_light & 0x3Fu) / 64.0; // vec3 my_chunk_pos = (vec3((uvec3(f_pos_norm) >> uvec3(0, 9, 18)) & uvec3(0x1FFu)) - 256.0) / 2.0; // tgt_color = vec4(hash(floor(vec4(my_chunk_pos.x, 0, 0, 0))), hash(floor(vec4(0, my_chunk_pos.y, 0, 1))), hash(floor(vec4(0, 0, my_chunk_pos.z, 2))), 1.0); // float f_ao = 0; // tgt_color = vec4(vec3(f_ao), 1.0); // tgt_color = vec4(f_col, 1.0); // return; // vec3 du = dFdx(f_pos); // vec3 dv = dFdy(f_pos); // vec3 f_norm = normalize(cross(du, dv)); // vec4 light_pos[2]; //#if (SHADOW_MODE == SHADOW_MODE_MAP) // // for (uint i = 0u; i < light_shadow_count.z; ++i) { // // light_pos[i] = /*vec3(*/shadowMats[i].texture_mat * vec4(f_pos, 1.0)/*)*/; // // } // vec4 sun_pos = /*vec3(*/shadowMats[0].texture_mat * vec4(f_pos, 1.0)/*)*/; //#elif (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_NONE) // vec4 sun_pos = vec4(0.0); //#endif vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); // vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0); // vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/); vec3 view_dir = -cam_to_frag; /* vec3 sun_dir = get_sun_dir(time_of_day.x); vec3 moon_dir = get_moon_dir(time_of_day.x); */ // float sun_light = get_sun_brightness(sun_dir); // float moon_light = get_moon_brightness(moon_dir); /* float sun_shade_frac = horizon_at(f_pos, sun_dir); float moon_shade_frac = horizon_at(f_pos, moon_dir); */ #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP || FLUID_MODE >= FLUID_MODE_MEDIUM) float f_alt = alt_at(f_pos.xy); #elif (SHADOW_MODE == SHADOW_MODE_NONE || FLUID_MODE == FLUID_MODE_LOW) float f_alt = f_pos.z; #endif #if (SHADOW_MODE == SHADOW_MODE_CHEAP || SHADOW_MODE == SHADOW_MODE_MAP) vec4 f_shadow = textureBicubic(t_horizon, s_horizon, pos_to_tex(f_pos.xy)); float sun_shade_frac = horizon_at2(f_shadow, f_alt, f_pos, sun_dir); #elif (SHADOW_MODE == SHADOW_MODE_NONE) float sun_shade_frac = 1.0;//horizon_at2(f_shadow, f_alt, f_pos, sun_dir); #endif float moon_shade_frac = 1.0;// horizon_at2(f_shadow, f_alt, f_pos, moon_dir); // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). // Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing). // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5); // NOTE: current assumption is that moon and sun shouldn't be out at the sae time. // This assumption is (or can at least easily be) wrong, but if we pretend it's true we avoids having to explicitly pass in a separate shadow // for the sun and moon (since they have different brightnesses / colors so the shadows shouldn't attenuate equally). // float shade_frac = /*1.0;*/sun_shade_frac + moon_shade_frac; // DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, light_pos); DirectionalLight sun_info = get_sun_info(sun_dir, sun_shade_frac, /*sun_pos*/f_pos); DirectionalLight moon_info = get_moon_info(moon_dir, moon_shade_frac/*, light_pos*/); vec3 surf_color; // If the figure is large enough to be 'terrain-like', we apply a noise effect to it #ifndef EXPERIMENTAL_NONOISE if (scale >= 0.5) { // TODO: Fix this, it isn't cprrect to use `f_norm` here. Would need something like // `m_norm` which is a normal relative to the figure. float noise = hash(vec4(floor(m_pos * 3.0 - vec3(0.5, 0, 0) - f_norm * 0.1), 0)); const float A = 0.055; const float W_INV = 1 / (1 + A); const float W_2 = W_INV * W_INV; const float NOISE_FACTOR = 0.015; vec3 noise_delta = (sqrt(f_col) * W_INV + noise * NOISE_FACTOR); surf_color = noise_delta * noise_delta * W_2; } else #endif { surf_color = f_col; } float alpha = 1.0; const float n2 = 1.5; // This is a silly hack. It's not true reflectance (see below for that), but gives the desired // effect without breaking the entire lighting model until we come up with a better way of doing // reflectivity that accounts for physical surroundings like the ground if ((material & (1u << 1u)) > 0u) { vec3 reflect_ray_dir = reflect(cam_to_frag, f_norm); surf_color *= dot(vec3(1.0) - abs(fract(reflect_ray_dir * 1.5) * 2.0 - 1.0) * 0.85, vec3(1)); alpha = 0.1; } const float R_s2s0 = pow((1.0 - n2) / (1.0 + n2), 2); const float R_s1s0 = pow((1.3325 - n2) / (1.3325 + n2), 2); const float R_s2s1 = pow((1.0 - 1.3325) / (1.0 + 1.3325), 2); const float R_s1s2 = pow((1.3325 - 1.0) / (1.3325 + 1.0), 2); float R_s = (f_pos.z < f_alt) ? mix(R_s2s1 * R_s1s0, R_s1s0, medium.x) : mix(R_s2s0, R_s1s2 * R_s2s0, medium.x); vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); vec3 k_s = vec3(R_s); vec3 emitted_light, reflected_light; // Make voxel shadows block the sun and moon sun_info.block *= model_light.x; moon_info.block *= model_light.x; // vec3 light_frac = /*vec3(1.0);*//*vec3(max(dot(f_norm, -sun_dir) * 0.5 + 0.5, 0.0));*/light_reflection_factor(f_norm, view_dir, vec3(0, 0, -1.0), vec3(1.0), vec3(R_s), alpha); // vec3 point_light = light_at(f_pos, f_norm); // vec3 light, diffuse_light, ambient_light; //get_sun_diffuse(f_norm, time_of_day.x, view_dir, k_a * point_shadow * (shade_frac * 0.5 + light_frac * 0.5), k_d * point_shadow * shade_frac, k_s * point_shadow * shade_frac, alpha, emitted_light, reflected_light); float max_light = 0.0; // reflected_light *= point_shadow * shade_frac; // emitted_light *= point_shadow * max(shade_frac, MIN_SHADOW); // max_light *= point_shadow * shade_frac; // reflected_light *= point_shadow; // emitted_light *= point_shadow; // max_light *= point_shadow; vec3 cam_attenuation = vec3(1); float fluid_alt = max(f_pos.z + 1, floor(f_alt + 1)); vec3 mu = medium.x == MEDIUM_WATER ? MU_WATER : vec3(0.0); #if (FLUID_MODE >= FLUID_MODE_MEDIUM) cam_attenuation = medium.x == MEDIUM_WATER ? compute_attenuation_point(cam_pos.xyz, view_dir, mu, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/f_pos) : compute_attenuation_point(f_pos, -view_dir, mu, fluid_alt, /*cam_pos.z <= fluid_alt ? cam_pos.xyz : f_pos*/cam_pos.xyz); #endif // Prevent the sky affecting light when underground float not_underground = clamp((f_pos.z - f_alt) / 128.0 + 1.0, 0.0, 1.0); max_light += get_sun_diffuse2(sun_info, moon_info, f_norm, view_dir, f_pos, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, f_norm, 1.0, emitted_light, reflected_light); max_light += lights_at(f_pos, f_norm, view_dir, mu, cam_attenuation, fluid_alt, k_a, k_d, k_s, alpha, f_norm, 1.0, emitted_light, reflected_light); // TODO: Hack to add a small amount of underground ambient light to the scene reflected_light += vec3(0.01, 0.02, 0.03) * (1.0 - not_underground); // Apply baked lighting from emissive blocks float glow_mag = length(model_glow.xyz); vec3 glow = pow(model_glow.w, 2) * 4 * glow_light(f_pos) * (max(dot(f_norm, model_glow.xyz / glow_mag) * 0.5 + 0.5, 0.0) + max(1.0 - glow_mag, 0.0)); emitted_light += glow * cam_attenuation; // Apply baked AO float ao = f_ao * sqrt(f_ao);//0.25 + f_ao * 0.75; ///*pow(f_ao, 0.5)*/f_ao * 0.85 + 0.15; reflected_light *= ao; emitted_light *= ao; // Apply point light AO float point_shadow = shadow_at(f_pos, f_norm); reflected_light *= point_shadow; emitted_light *= point_shadow; // Apply emissive glow // For now, just make glowing material light be the same colour as the surface // TODO: Add a way to control this better outside the shaders if ((material & (1u << 0u)) > 0u) { emitted_light += 20 * surf_color; } /* reflected_light *= cloud_shadow(f_pos); */ /* vec3 point_light = light_at(f_pos, f_norm); emitted_light += point_light; reflected_light += point_light; */ // get_sun_diffuse(f_norm, time_of_day.x, cam_to_frag, surf_color * f_light * point_shadow, 0.5 * surf_color * f_light * point_shadow, 0.5 * surf_color * f_light * point_shadow, 2.0, emitted_light, reflected_light); // get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 1.0); // diffuse_light *= point_shadow; // ambient_light *= point_shadow; // vec3 point_light = light_at(f_pos, f_norm); // light += point_light; // diffuse_light += point_light; // reflected_light += point_light; // vec3 surf_color = illuminate(srgb_to_linear(highlight_col.rgb * f_col), light, diffuse_light, ambient_light); float reflectance = 0.0; // TODO: Do reflectance properly like this later vec3 reflect_color = vec3(0); /* if ((material & (1u << 1u)) > 0u && false) { vec3 reflect_ray_dir = reflect(cam_to_frag, f_norm); reflect_color = get_sky_color(reflect_ray_dir, time_of_day.x, f_pos, vec3(-100000), 0.125, true); reflect_color = get_cloud_color(reflect_color, reflect_ray_dir, cam_pos.xyz, time_of_day.x, 100000.0, 0.25); reflectance = 1.0; } */ surf_color = illuminate(max_light, view_dir, mix(surf_color * emitted_light, reflect_color, reflectance), mix(surf_color * reflected_light, reflect_color, reflectance)) * highlight_col.rgb; // if ((flags & 1) == 1 && int(cam_mode) == 1) { // float distance = distance(vec3(cam_pos), focus_pos.xyz) - 2; // float opacity = clamp(distance / distance_divider, 0, 1); // // if(threshold_matrix[int(gl_FragCoord.x) % 4][int(gl_FragCoord.y) % 4] > opacity) { // // discard; // // return; // // } // } tgt_color = vec4(surf_color, 1.0); tgt_mat = uvec4(uvec3((f_norm + 1.0) * 127.0), MAT_FIGURE); }