#version 440 core #include #define LIGHTING_TYPE LIGHTING_TYPE_REFLECTION #define LIGHTING_REFLECTION_KIND LIGHTING_REFLECTION_KIND_GLOSSY #define LIGHTING_TRANSPORT_MODE LIGHTING_TRANSPORT_MODE_IMPORTANCE #define LIGHTING_DISTRIBUTION_SCHEME LIGHTING_DISTRIBUTION_SCHEME_MICROFACET #define LIGHTING_DISTRIBUTION LIGHTING_DISTRIBUTION_BECKMANN #include #include #include #include layout(location = 0) in vec3 v_pos; // in uint v_col; layout(location = 1) in uint v_norm_ao; layout(location = 2) in float inst_time; layout(location = 3) in float inst_lifespan; layout(location = 4) in float inst_entropy; layout(location = 5) in int inst_mode; layout(location = 6) in vec3 inst_dir; layout(location = 7) in vec3 inst_pos; layout(location = 0) out vec3 f_pos; layout(location = 1) flat out vec3 f_norm; layout(location = 2) out vec4 f_col; //layout(location = x) out float f_ao; //layout(location = x) out float f_light; layout(location = 3) out float f_reflect; const float SCALE = 1.0 / 11.0; // Modes const int SMOKE = 0; const int FIRE = 1; const int GUN_POWDER_SPARK = 2; const int SHRAPNEL = 3; const int FIREWORK_BLUE = 4; const int FIREWORK_GREEN = 5; const int FIREWORK_PURPLE = 6; const int FIREWORK_RED = 7; const int FIREWORK_WHITE = 8; const int FIREWORK_YELLOW = 9; const int LEAF = 10; const int FIREFLY = 11; const int BEE = 12; const int GROUND_SHOCKWAVE = 13; const int ENERGY_HEALING = 14; const int ENERGY_NATURE = 15; const int FLAMETHROWER = 16; const int FIRE_SHOCKWAVE = 17; const int FIRE_BOWL = 18; const int SNOW = 19; const int EXPLOSION = 20; const int ICE = 21; const int LIFESTEAL_BEAM = 22; const int CULTIST_FLAME = 23; const int STATIC_SMOKE = 24; const int BLOOD = 25; const int ENRAGED = 26; const int BIG_SHRAPNEL = 27; const int LASER = 28; const int BUBBLES = 29; const int WATER = 30; const int ICE_SPIKES = 31; const int DRIP = 32; const int TORNADO = 33; const int DEATH = 34; const int ENERGY_BUFFING = 35; const int WEB_STRAND = 36; const int BLACK_SMOKE = 37; const int LIGHTNING = 38; const int STEAM = 39; const int BARRELORGAN = 40; const int POTION_SICKNESS = 41; const int GIGA_SNOW = 42; const int CYCLOPS_CHARGE = 43; const int PORTAL_FIZZ = 45; const int INK = 46; const int WHIRLWIND = 47; const int FIERY_BURST = 48; const int FIERY_BURST_VORTEX = 49; const int FIERY_BURST_SPARKS = 50; const int FIERY_BURST_ASH = 51; const int FIERY_TORNADO = 52; const int PHOENIX_CLOUD = 53; const int FIERY_DROPLET_TRACE = 54; const int ENERGY_PHOENIX = 55; const int PHOENIX_BEAM = 56; const int PHOENIX_BUILD_UP_AIM = 57; const int CLAY_SHRAPNEL = 58; const int AIRFLOW = 59; const int SPORE = 60; const int SURPRISE_EGG = 61; // meters per second squared (acceleration) const float earth_gravity = 9.807; struct Attr { vec3 offs; vec3 scale; vec4 col; mat4 rot; }; float lifetime = time_since(inst_time); // Retrieves inst_time, repeating over a period. This will be consistent // over a time overflow. float loop_inst_time(float period, float scale) { if (tick.x < inst_time) { return mod(mod(tick_overflow * scale, period) + inst_time * scale, period); } else { return mod(inst_time * scale, period); } } vec3 linear_motion(vec3 init_offs, vec3 vel) { return init_offs + vel * lifetime; } vec3 quadratic_bezier_motion(vec3 start, vec3 ctrl0, vec3 end) { float t = lifetime; float u = 1 - lifetime; return u*u*start + t*u*ctrl0 + t*t*end; } vec3 grav_vel(float grav) { return vec3(0, 0, -grav * lifetime); } float exp_scale(float factor) { return 1 / (1 - lifetime * factor); } float linear_scale(float factor) { return lifetime * factor; } float percent() { return lifetime / inst_lifespan; } float slow_end(float factor) { return (1 + factor) * percent() / (percent() + factor); } float slow_start(float factor) { return 1-(1 + factor) * (1-percent()) / ((1-percent()) + factor); } float start_end(float from, float to) { return mix(from, to, lifetime / inst_lifespan); } mat4 spin_in_axis(vec3 axis, float angle) { axis = normalize(axis); float s = sin(angle); float c = cos(angle); float oc = 1.0 - c; return mat4( oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0, 0, 0, 0, 1 ); } mat4 identity() { return mat4( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); } vec3 perp_axis1(vec3 axis) { return normalize(vec3(axis.y + axis.z, -axis.x + axis.z, -axis.x - axis.y)); } vec3 perp_axis2(vec3 axis1, vec3 axis2) { return normalize(vec3(axis1.y * axis2.z - axis1.z * axis2.y, axis1.z * axis2.x - axis1.x * axis2.z, axis1.x * axis2.y - axis1.y * axis2.x)); } // Line is the axis of the spiral, it goes from the start position to the end position // Radius is the distance from the axis the particle is // Time function is some value that ideally goes from 0 to 1. When it is 0, it is as // the point (0, 0, 0), when it is 1, it is at the point provided by the coordinates of line // Frequency increases the frequency of rotation // Offset is an offset to the angle of the rotation vec3 spiral_motion(vec3 line, float radius, float time_function, float frequency, float offset) { vec3 axis2 = perp_axis1(line); vec3 axis3 = perp_axis2(line, axis2); return line * time_function + vec3( radius * cos(frequency * time_function - offset) * axis2.x + radius * sin(frequency * time_function - offset) * axis3.x, radius * cos(frequency * time_function - offset) * axis2.y + radius * sin(frequency * time_function - offset) * axis3.y, radius * cos(frequency * time_function - offset) * axis2.z + radius * sin(frequency * time_function - offset) * axis3.z); } void main() { float rand0 = hash(vec4(inst_entropy + 0)); float rand1 = hash(vec4(inst_entropy + 1)); float rand2 = hash(vec4(inst_entropy + 2)); float rand3 = hash(vec4(inst_entropy + 3)); float rand4 = hash(vec4(inst_entropy + 4)); float rand5 = hash(vec4(inst_entropy + 5)); float rand6 = hash(vec4(inst_entropy + 6)); float rand7 = hash(vec4(inst_entropy + 7)); float rand8 = hash(vec4(inst_entropy + 8)); float rand9 = hash(vec4(inst_entropy + 9)); vec3 start_pos = inst_pos - focus_off.xyz; Attr attr; f_reflect = 1.0; switch(inst_mode) { case SMOKE: attr = Attr( linear_motion( vec3(0), vec3(rand2 * 0.02, rand3 * 0.02, 1.0 + rand4 * 0.1) ), vec3(linear_scale(0.5)), vec4(vec3(0.8, 0.8, 1) * 0.125 * (3.8 + rand0), start_end(1.0, 0.0)), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 0.5) ); break; case BLACK_SMOKE: attr = Attr( linear_motion( vec3(0), vec3(rand2 * 0.02, rand3 * 0.02, 1.0 + rand4 * 0.1) ), vec3(linear_scale(0.5)), vec4(vec3(0.8, 0.8, 1) * 0.125 * (1.8 + rand0), start_end(1.0, 0.0)), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 0.5) ); break; case FIRE: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0.0), vec3(rand2 * 0.1, rand3 * 0.1, 2.0 + rand4 * 1.0) ), vec3(1.0), vec4(6, 3 + rand5 * 0.3 - 0.8 * percent(), 0.4, 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3) ); break; case FIRE_BOWL: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(normalize(vec2(rand0, rand1)) * 0.1, 0.6), vec3(rand2 * 0.2, rand3 * 0.5, 0.8 + rand4 * 0.5) ), vec3(0.2), // Size vec4(2, 1.5 + rand5 * 0.5, 0, start_end(1.0, 0.0)), // Colour spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3) ); break; case GUN_POWDER_SPARK: attr = Attr( linear_motion( normalize(vec3(rand0, rand1, rand3)) * 0.3, normalize(vec3(rand4, rand5, rand6)) * 4.0 + grav_vel(earth_gravity) ), vec3(1.0), vec4(3.5, 3 + rand7, 0, 1), spin_in_axis(vec3(1,0,0),0) ); break; case SHRAPNEL: attr = Attr( linear_motion( vec3(0), normalize(vec3(rand4, rand5, rand6)) * 20.0 + grav_vel(earth_gravity) ), vec3(1), vec4(vec3(0.25), 1), spin_in_axis(vec3(1,0,0),0) ); break; case BIG_SHRAPNEL: float brown_color = 0.05 + 0.1 * rand1; attr = Attr( linear_motion( vec3(0), normalize(vec3(rand4, rand5, rand6)) * 15.0 + grav_vel(earth_gravity) ), vec3(5 * (1 - percent())), vec4(vec3(brown_color, brown_color / 2, 0), 1), spin_in_axis(vec3(1,0,0),0) ); break; case FIREWORK_BLUE: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0), normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity) ), vec3(3.0 + rand0), vec4(vec3(0, 0, 2), 1), identity() ); break; case FIREWORK_GREEN: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0), normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity) ), vec3(3.0 + rand0), vec4(vec3(0, 2, 0), 1), identity() ); break; case FIREWORK_PURPLE: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0), normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity) ), vec3(3.0 + rand0), vec4(vec3(2, 0, 2), 1), identity() ); break; case FIREWORK_RED: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0), normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity) ), vec3(3.0 + rand0), vec4(vec3(2, 0, 0), 1), identity() ); break; case FIREWORK_WHITE: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0), normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity) ), vec3(3.0 + rand0), vec4(vec3(2, 2, 2), 1), identity() ); break; case FIREWORK_YELLOW: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( linear_motion( vec3(0), normalize(vec3(rand1, rand2, rand3)) * 40.0 + grav_vel(earth_gravity) ), vec3(3.0 + rand0), vec4(vec3(2, 2, 0), 1), identity() ); break; case LEAF: attr = Attr( linear_motion( vec3(0), vec3(0, 0, -2) ) + vec3(sin(lifetime), sin(lifetime + 0.7), sin(lifetime * 0.5)) * 2.0, vec3(4), vec4(vec3(0.2 + rand7 * 0.2, 0.2 + (0.25 + rand6 * 0.5) * 0.3, 0) * (0.75 + rand1 * 0.5), 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5) ); break; case SNOW: float height = mix(-4, 60, pow(start_end(1, 0), 3)); float wind_speed = (inst_pos.z - 2000) * 0.025; vec3 offset = linear_motion(vec3(0), vec3(1, 1, 0) * wind_speed); float end_alt = alt_at(start_pos.xy + offset.xy); attr = Attr( offset + vec3(0, 0, end_alt - start_pos.z + height) + vec3(sin(lifetime), sin(lifetime + 0.7), sin(lifetime * 0.5)) * 3, vec3(mix(4, 0, pow(start_end(1, 0), 4))), vec4(1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5) ); break; case FIREFLY: float raise = pow(sin(3.1416 * lifetime / inst_lifespan), 0.2); attr = Attr( vec3(0, 0, raise * 5.0) + vec3( sin(lifetime * 1.0 + rand0) + sin(lifetime * 7.0 + rand3) * 0.3, sin(lifetime * 3.0 + rand1) + sin(lifetime * 8.0 + rand4) * 0.3, sin(lifetime * 2.0 + rand2) + sin(lifetime * 9.0 + rand5) * 0.3 ), vec3(raise), vec4(vec3(10.3, 9, 1.5), 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5) ); break; case BEE: float lower = pow(sin(3.1416 * lifetime / inst_lifespan), 0.2); attr = Attr( vec3(0, 0, lower * -0.5) + vec3( sin(lifetime * 2.0 + rand0) + sin(lifetime * 9.0 + rand3) * 0.3, sin(lifetime * 3.0 + rand1) + sin(lifetime * 10.0 + rand4) * 0.3, sin(lifetime * 4.0 + rand2) + sin(lifetime * 11.0 + rand5) * 0.3 ) * 0.5, vec3(lower), vec4(vec3(1, 0.7, 0), 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5) ); break; case GROUND_SHOCKWAVE: attr = Attr( vec3(0.0), vec3(11.0, 11.0, (33.0 * rand0 * sin(2.0 * lifetime * 3.14 * 2.0))) / 3, vec4(vec3(0.32 + (rand0 * 0.04), 0.22 + (rand1 * 0.03), 0.05 + (rand2 * 0.01)), 1), spin_in_axis(vec3(1,0,0),0) ); break; case ENERGY_HEALING: f_reflect = 0.0; float spiral_radius = start_end(1 - pow(abs(rand5), 5), 1) * length(inst_dir); attr = Attr( spiral_motion(vec3(0, 0, rand3 + 1), spiral_radius, lifetime, abs(rand0), rand1 * 2 * PI) + vec3(0, 0, rand2), vec3(6 * abs(rand4) * (1 - slow_start(2)) * pow(spiral_radius / length(inst_dir), 0.5)), vec4(vec3(0, 1.7, 0.7) * 3, 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3) ); break; case LIFESTEAL_BEAM: f_reflect = 0.0; float green_col = 0.8 + 0.8 * sin(tick_loop(2 * PI, 5, lifetime * 5)); float purple_col = 0.6 + 0.5 * sin(loop_inst_time(2 * PI, 4)) - min(max(green_col - 1, 0), 0.3); float red_col = 1.15 + 0.1 * sin(loop_inst_time(2 * PI, 3)) - min(max(green_col - 1, 0), 0.3) - max(purple_col - 0.5, 0); attr = Attr( spiral_motion(inst_dir, 0.3 * (floor(2 * rand0 + 0.5) - 0.5) * min(linear_scale(10), 1), lifetime / inst_lifespan, 10.0, loop_inst_time(2.0 * PI, 1.0)), vec3((1.7 - 0.7 * abs(floor(2 * rand0 - 0.5) + 0.5)) * (1.5 + 0.5 * sin(tick_loop(2 * PI, 10, -lifetime * 4)))), vec4(vec3(red_col + purple_col * 0.6, green_col + purple_col * 0.35, purple_col), 1), spin_in_axis(inst_dir, tick_loop(2 * PI)) ); break; case ENERGY_NATURE: f_reflect = 0.0; spiral_radius = start_end(1 - pow(abs(rand5), 5), 1) * length(inst_dir); attr = Attr( spiral_motion(vec3(0, 0, rand3 + 1), spiral_radius, lifetime, abs(rand0), rand1 * 2 * PI) + vec3(0, 0, rand2), vec3(6 * abs(rand4) * (1 - slow_start(2)) * pow(spiral_radius / length(inst_dir), 0.5)), vec4(vec3(0, 1.7, 1.3), 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3) ); break; case FLAMETHROWER: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3((2.5 * (1 - slow_start(0.2)))), vec4(6, 3 + rand5 * 0.6 - 0.8 * percent(), 0.4, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case EXPLOSION: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( inst_dir * ((rand0+1.0)/2 + 0.4) * slow_end(0.25) + 0.3 * grav_vel(earth_gravity), vec3((3 * (1 - slow_start(0.1)))), vec4(6, 3 + rand5 * 0.3 - 0.8 * percent(), 0.4, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case ICE: f_reflect = 0.0; // Ice doesn't reflect to look like magic float ice_color = 1.9 + rand5 * 0.3; attr = Attr( inst_dir * ((rand0+1.0)/2 + 0.4) * slow_end(2.0) + 0.3 * grav_vel(earth_gravity), vec3((5 * (1 - slow_start(.1)))), vec4(0.8 * ice_color, 0.9 * ice_color, ice_color, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case FIRE_SHOCKWAVE: f_reflect = 0.0; // Fire doesn't reflect light, it emits it attr = Attr( vec3(rand0, rand1, lifetime * 10 + rand2), vec3((5 * (1 - slow_start(0.5)))), vec4(6, 3 + rand5 * 0.6 - 0.8 * percent(), 0.4, 1), spin_in_axis(vec3(rand3, rand4, rand5), rand6) ); break; case CULTIST_FLAME: f_reflect = 0.0; // Fire doesn't reflect light, it emits it float purp_color = 0.9 + 0.3 * rand3; attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3((3.5 * (1 - slow_start(0.2)))), vec4(purp_color, 0.0, purp_color, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case STATIC_SMOKE: attr = Attr( vec3(0), vec3((0.5 * (1 - slow_start(0.8)))), vec4(1.0), spin_in_axis(vec3(rand6, rand7, rand8), rand9) ); break; case BLOOD: attr = Attr( linear_motion( vec3(0), normalize(vec3(rand4, rand5, rand6)) * 5.0 + grav_vel(earth_gravity) ), vec3((2.0 * (1 - slow_start(0.8)))), vec4(1, 0, 0, 1), spin_in_axis(vec3(1,0,0),0) ); break; case ENRAGED: f_reflect = 0.0; float red_color = 1.2 + 0.3 * rand3; attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3((3.5 * (1 - slow_start(0.2)))), vec4(red_color, 0.0, 0.0, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case LASER: f_reflect = 0.0; vec3 perp_axis = normalize(cross(inst_dir, vec3(0.0, 0.0, 1.0))); offset = vec3(0.0); if (rand0 > 0.0) { offset = perp_axis * 0.5; } else { offset = perp_axis * -0.5; } attr = Attr( inst_dir * percent() + offset, vec3(1.0, 1.0, 50.0), vec4(vec3(2.0, 0.0, 0.0), 1), spin_in_axis(perp_axis, asin(inst_dir.z / length(inst_dir)) + PI / 2.0) ); break; case BUBBLES: f_reflect = 0.0; // Magic water doesn't reflect light, it emits it float blue_color = 1.5 + 0.2 * rand3 + 1.5 * max(floor(rand4 + 0.3), 0.0); float size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15); attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3(size), vec4(0.5 * blue_color, 0.75 * blue_color, blue_color, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case WATER: f_reflect = 0.0; // Magic water doesn't reflect light, it emits it blue_color = 1.25 + 0.2 * rand3 + 1.75 * max(floor(rand4 + 0.15), 0.0); size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15); attr = Attr( (inst_dir * slow_end(0.2)) + vec3(rand0, rand1, rand2) * 0.5, vec3(size), vec4(0.5 * blue_color, 0.9 * blue_color, blue_color, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 5 + 3 * rand9) ); break; case ICE_SPIKES: f_reflect = 0.0; // Ice doesn't reflect to look like magic ice_color = 1.7 + rand5 * 0.2; attr = Attr( vec3(0.0), vec3(11.0, 11.0, 11.0 * length(inst_dir) * 2.0 * (0.5 - abs(0.5 - slow_end(0.5)))) / 3, vec4(0.8 * ice_color, 0.9 * ice_color, ice_color, 1), spin_in_axis(vec3(1,0,0),0) ); break; case DRIP: attr = Attr( linear_motion( vec3(0), normalize(vec3(rand4, rand5, rand6)) + grav_vel(earth_gravity) ), vec3((2.0 * (1 - slow_start(0.2)))), vec4(1, 1, 0, 1), spin_in_axis(vec3(1,0,0),0) ); break; case TORNADO: f_reflect = 0.0; attr = Attr( spiral_motion(vec3(0, 0, 5), abs(rand0) + abs(rand1) * percent() * 3.0, percent(), 15.0 * abs(rand2), rand3), vec3((2.5 * (1 - slow_start(0.05)))), vec4(vec3(1.2 + 0.5 * percent()), 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case DEATH: f_reflect = 0.0; attr = Attr( linear_motion( vec3(0), vec3(rand2 * 0.02, rand3 * 0.02, 2.0 + rand4 * 0.6) ), vec3((1.2 * (1 - slow_start(.1)))), vec4(vec3(1.2 + 0.5 * percent()), 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case ENERGY_BUFFING: f_reflect = 0.0; spiral_radius = start_end(1 - pow(abs(rand5), 5), 1) * length(inst_dir); attr = Attr( spiral_motion(vec3(0, 0, rand3 + 1), spiral_radius, lifetime, abs(rand0), rand1 * 2 * PI) + vec3(0, 0, rand2), vec3(6 * abs(rand4) * (1 - slow_start(2)) * pow(spiral_radius / length(inst_dir), 0.5)), vec4(vec3(1.4), 1), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3) ); break; case WEB_STRAND: f_reflect = 0.0; perp_axis = normalize(cross(inst_dir, vec3(0.0, 0.0, 1.0))); attr = Attr( inst_dir * percent(), vec3(1.0, 1.0, 50.0), vec4(vec3(2.0), 1), spin_in_axis(perp_axis, asin(inst_dir.z / length(inst_dir)) + PI / 2.0) ); break; case LIGHTNING: f_reflect = 0.0; perp_axis = normalize(cross(inst_dir, vec3(0.0, 0.0, 1.0))); float z = inst_dir.z * (percent() - 1.0); vec3 start_off = vec3(abs(fract(vec3(vec2(z) * vec2(0.015, 0.01), 0)) - 0.5) * z * 0.4); attr = Attr( inst_dir * percent() + start_off, vec3(max(3.0, 0.05 * length(start_pos + inst_dir * percent()))), vec4(10.0, 20.0, 50.0, 1.0),// * (1.0 - length(inst_dir) * 0.1), identity()//spin_in_axis(perp_axis, asin(inst_dir.z / length(inst_dir)) + PI / 2.0) ); break; case STEAM: f_reflect = 0.0; // Magic steam doesn't reflect light, it emits it float steam_size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15); attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3(steam_size), vec4(vec3(0.7, 2.7, 1.3), 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case BARRELORGAN: attr = Attr( linear_motion( vec3(rand0 * 0.25, rand1 * 0.25, 1.7 + rand5), vec3(rand2 * 0.1, rand3 * 0.1, 1.0 + rand4 * 0.5) ), vec3(exp_scale(-0.2)) * rand0, vec4(vec3(0.7, 2.7, 1.3), 1), spin_in_axis(vec3(1,0,0),0) ); break; case POTION_SICKNESS: attr = Attr( quadratic_bezier_motion( vec3(0.0), vec3(inst_dir.xy, 0.0), inst_dir ), vec3((2.0 * (1 - slow_start(0.8)))), vec4(0.075, 0.625, 0, 1), spin_in_axis(vec3(1,0,0),0) ); break; case GIGA_SNOW: f_reflect = 0.0; attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3((3.5 * (1 - slow_start(0.2)))), vec4(vec3(2, 2, 2), 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case CYCLOPS_CHARGE: f_reflect = 0.0; float burn_size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15); attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3(burn_size), vec4(vec3(6.9, 0.0, 0.0), 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case PORTAL_FIZZ: attr = Attr( inst_dir * (0.7 + pow(percent(), 5)) + vec3( sin(lifetime * 1.25 + rand0 * 10) + sin(lifetime * 1.3 + rand3 * 10), sin(lifetime * 1.2 + rand1 * 10) + sin(lifetime * 1.4 + rand4 * 10), sin(lifetime * 5 + rand2) ) * 0.03, vec3(pow(1.0 - abs(percent() - 0.5) * 2.0, 0.2)), mix( vec4(mix(vec3(0.4, 0.8, 0.2), vec3(5, 10, 2), pow(percent(), 2)), 1), vec4(mix(vec3(0.6, 0.2, 0.8), vec3(9, 2, 10), pow(percent(), 2)), 1), clamp((dot(normalize(focus_pos.xyz - start_pos), inst_dir) - 0.25) * 3.0, 0.0, 1.0) ), /* vec4(vec3(1.8 - percent() * 2, 0.4 + percent() * 2, 5.0 + rand6), 1), */ spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3 + lifetime * 5) ); break; case INK: f_reflect = 0.0; // Magic water doesn't reflect light, it emits it float black_color = 0.3 + 0.2 * rand3 + 0.3 * max(floor(rand4 + 0.3), 0.0); float ink_size = 8.0 * (1 - slow_start(0.1)) * slow_end(0.15); attr = Attr( (inst_dir * slow_end(1.5)) + vec3(rand0, rand1, rand2) * (percent() + 2) * 0.1, vec3(ink_size), vec4(0.5 * black_color, 0.75 * black_color, black_color, 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case WHIRLWIND: f_reflect = 0.0; attr = Attr( spiral_motion(vec3(0, 0, 3), abs(rand0) * 3 + percent() * 20.5, percent(), -8.0 + (rand0 * 3), rand1 * 360.), vec3((-2.5 * (1 - slow_start(0.05)))), vec4(vec3(1.3, 1.8, 2), 1), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case FIERY_BURST: f_reflect = 0.0; float fiery_radius = start_end(1.0 - pow(abs(rand5), 5.0), 1.0) * length(inst_dir); float fiery_color1 = (7.0 + 1.0 * percent()) * min(1.0, percent() * 4.0) * 1.5; float fiery_color2 = (4.0 - 2.0 * percent() + 1.3 * rand5 * slow_end(0.0)) * min(1.0, percent() * 4.0) * 1.3; float fiery_color3 = 1.0 + 0.3 * percent(); attr = Attr( spiral_motion( vec3( 0.0, 0.0, (rand3 + 1.0) * max( ((percent() * 8.0) * (1.0 - step(0.2, percent()))), ((2.0 * (1.0 - percent())) * (step(0.2, percent()))) ) ), fiery_radius, lifetime, max(0.1, step(0.6, percent())) * 3.0 * abs(rand0), rand1 * 2.0 * PI) + vec3(0.0, 0.0, rand2), vec3(6.0 * abs(rand4) * (1.0 - slow_start(2.0)) * pow(fiery_radius / length(inst_dir), 0.5)), vec4(fiery_color1, fiery_color2, fiery_color3, slow_end(0.4)), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3.0) ); break; case FIERY_BURST_VORTEX: f_reflect = 0.0; float fiery_vortex_color1 = (min(1, percent() * 2) * (5 + 1 * percent() + 1 * slow_end(0)) * 1.5); float fiery_vortex_color2 = (min(1, percent() * 2) * (4 - 2.4 * percent() + 1.3 * rand5 * slow_end(0)) * 1.3); float fiery_vortex_color3 = 0; attr = Attr( spiral_motion( vec3( 0, 0, (0 + 0.5 * rand4 ) + 4.0 * max( ((percent() * 8) * (1 - step(0.2, percent()))), // first 20% of lifetime particle moves up, then goes down ((2 * (1 - percent())) * (step(0.2, percent())))// to avoid tearing multi should have same proportion as edge(here: 8 before, 2 after) ) ), abs(rand0) + 0.5 * 10 * percent(), percent(), 10.0 * abs(rand2), rand3), vec3((2.5 * (1 - slow_start(0.05)))), vec4(fiery_vortex_color1, fiery_vortex_color2, fiery_vortex_color3, start_end(0.5, 1.5) * abs(rand2)), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case FIERY_BURST_SPARKS: f_reflect = 0.0; // sparks should flicker, so it stops glowing for 18% of time 4 times per second, same thing used in 4th float of RGBA vector float fiery_sparks_color1 = 2 + 1 * rand2 + 2 * step(0.18, fract(tick.x*4)); float fiery_sparks_color2 = 4 + 1 * rand2 + 4 * step(0.18, fract(tick.x*4)); float fiery_sparks_color3 = 4 + 6 * step(0.18, fract(tick.x*4)); attr = Attr( spiral_motion(vec3(0, 0, 5), abs(rand0) + abs(rand1) * percent() * 4.0, percent(), 8.0 * abs(rand2), rand3), vec3((2.5 * (1 - slow_start(0.05)))), vec4(fiery_sparks_color1, fiery_sparks_color2, fiery_sparks_color3, 0.5 + 0.5 * step(0.18, fract(tick.x*4))), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case FIERY_BURST_ASH: f_reflect = 0.0; /// inst_dir holds info about: /// .x: radius of random spawn float fiery_ash_rand_rad = inst_dir.x; /// .y: /// in fract: relative time of "setting on fire" /// in int: radius of curve float fiery_ash_radius = floor(inst_dir.y); float fiery_ash_edge = inst_dir.y - fiery_ash_radius; /// .z: height of the flight float fiery_ash_height = inst_dir.z; // {FOR PHOENIX "from the ashes"}sets ash on fire at 0.4 of lifetime, then makes it lose glow, representing losing heat float fiery_ash_color1 = (2 + 1 * percent() * slow_end(0)) * (max( 1, 8 * step(fiery_ash_edge, percent()) * (1.4 - percent())) ); float fiery_ash_color2 = (2 - 1 * percent() + 0.3 * abs(rand5) * slow_end(0.5)) * (max( 1, 6.5 * step(fiery_ash_edge, percent()) * (1.4 - percent())) ); float fiery_ash_color3 = 1.5; attr = Attr( spiral_motion( vec3( 0.0, 0.0, fiery_ash_height// {FOR PHOENIX "from the ashes"} 8.58 ), abs(rand0 / 2.0 + 1.0) * max(1.0, ((percent() * fiery_ash_radius * 0.8) * (1.0 - step(0.2, percent())))) // part of lifetime particle moves to periphery * max(1.0, (fiery_ash_radius * 0.2 * (1.0 - percent()) * (step(0.2, percent())))),// then back to center percent(), 6.0 * abs(rand2), rand3 * 5.0 ) + vec3((rand6 + rand5) * fiery_ash_rand_rad, (rand8 + rand3) * fiery_ash_rand_rad, abs(rand0)),//makes it apear randomly above base animation (Fiery Burst) vec3((2.5 * (1 - slow_start(0.0)))), vec4(fiery_ash_color1, fiery_ash_color2, fiery_ash_color3, abs(rand2) * slow_end(0.3)), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case FIERY_TORNADO: f_reflect = 0.0; float fiery_tornado_color1 = (2.6 + 0.5 * percent()) * 4.0 * max(0.5, percent() * 1.2); float fiery_tornado_color2 = (1.7 - 0.6 * pow(1.0 - percent(), 2.0) + 0.3 * abs(rand5)) * 2.0 * max(0.45, percent() * 1.2); float fiery_tornado_color3 = 1.5 * max(0.6, percent()); attr = Attr( spiral_motion(vec3(0, 0, 6.0 + rand3 * 1.5), abs(rand0) + abs(rand1) * percent() * 3.0, percent(), 15.0 * abs(rand2), -inst_time), vec3((2.5 * (1 - slow_start(0.05)))), vec4(fiery_tornado_color1, fiery_tornado_color2, fiery_tornado_color3, 0.5), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; case PHOENIX_CLOUD: float PC_spin = floor(inst_dir.x); float refl = floor(inst_dir.y); float PC_size = floor(inst_dir.z); //best is 0.4 - reflects some light but only part as f_reflect = refl * 0.1; // modifies by + 5% to -15%, if color is less than 0.5 it will get from +10% to +25% to it's value float PC_rand_color_factor = rand0 * 0.05; float PC_R = inst_dir.x - PC_spin; PC_R += PC_R * PC_rand_color_factor * step(0.05, PC_R) * -abs(PC_rand_color_factor * 2.0) + PC_R * (1.0 - step(0.05, PC_R)) * max(abs(PC_rand_color_factor), 0.02) * 5.0; float PC_G = inst_dir.y - refl; PC_G += PC_G * PC_rand_color_factor * step(0.05, PC_G) * -abs(PC_rand_color_factor * 2.0) + PC_G * (1.0 - step(0.05, PC_G)) * max(abs(PC_rand_color_factor), 0.02) * 5.0; float PC_B = inst_dir.z - PC_size; PC_B += PC_B * PC_rand_color_factor * step(0.05, PC_B) * -abs(PC_rand_color_factor * 2.0) + PC_B * (1.0 - step(0.05, PC_B)) * max(abs(PC_rand_color_factor), 0.02) * 5.0; attr = Attr( linear_motion( vec3(0.0, 0.0, 0.0), vec3(rand4, rand5, rand6 * 2.5) ), vec3(8.0 * min(percent() * 3.0, 1.0) * min((1.0 - percent()) * 2.0, 1.0)), vec4( PC_R, PC_G, PC_B, PC_size * 1.2) * 10.0, spin_in_axis(vec3(rand6 + rand5, rand7 + rand9, rand8 + rand2), percent() * PC_spin) ); break; case FIERY_DROPLET_TRACE: float m_r = 4.0; f_reflect = 0.0; // Fire doesn't reflect light, it emits it float prcnt = percent(); //idk if compiler would optimize it or not but as we have a lot of those particles... i'll just try float droplet_color1 = 1 * (5 + 1 * prcnt + 1 * slow_end(0)) * 1.5; float droplet_color2 = 1 * (4 - 2.4 * prcnt + 1.3 * rand5 * slow_end(0)) * 1.3; float droplet_color3 = 0; attr = Attr( quadratic_bezier_motion( vec3(0.0), vec3(m_r * rand0, m_r * rand1, 0.0), vec3(m_r * rand0, m_r * rand1, 4.0) ), vec3(1), vec4(droplet_color1, droplet_color2, droplet_color3, 1 * prcnt * (1 - step(0.5, prcnt)) + (1 - prcnt) * (step(0.5, prcnt))), spin_in_axis(vec3(1,0,0),0) ); break; case ENERGY_PHOENIX: f_reflect = 0.0; float fiery_r = (2 + 1 * percent() * slow_end(0)) * 6 * (1.4 - percent()); float fiery_g = (2 - 1 * percent() + 0.3 * abs(rand5) * slow_end(0.5)) * 4.5 * (1.4 - percent()); float fiery_b = 1.5; spiral_radius = length(inst_dir); attr = Attr( spiral_motion(vec3(0.0, 0.0, 0.01), spiral_radius + abs(rand1), lifetime / 0.5, abs(rand0), rand1 * 2.0 * PI) + vec3(0.0, 0.0, rand2), vec3(6.0 * abs(rand4) * (1 - slow_start(2.0))), vec4(vec3(fiery_r, fiery_g, fiery_b), 1.0), spin_in_axis(vec3(rand6, rand7, rand8), rand9 * 3.0) ); break; case PHOENIX_BEAM: f_reflect = 0.0; // Fire doesn't reflect light, it emits it float beam_r = 6.0 - (4.0 * percent()) + 15.0 * fract(percent() * 4 + rand0 * rand0) * (1 - percent()); float beam_g = 2.0 + 6.6 * fract(percent() * 4 + rand0 * rand0) * (1 - percent()); float beam_b = 1.4; vec3 factor_rand = vec3((rand0 * 0.2) * (rand5 * 0.1) + rand6 * 0.9, (rand1 * 0.2) * (rand4 * 0.1) + rand7 * 0.9, (rand2 * 0.2) * (rand3 * 0.1) + rand8 * 0.9); start_pos += factor_rand + normalize(inst_dir) * 0.6; attr = Attr( spiral_motion(inst_dir - factor_rand * 0.4, 0.3 * ((rand2 + 0.5) * 5.5) * (1.0 - min(linear_scale(1.5), 1.0)), lifetime / inst_lifespan, 24.0, -inst_time * 8.0), vec3((2.5 * (1 - slow_start(0.2)))), vec4(beam_r, beam_g, beam_b, 1.0), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10.0 + 3.0 * rand9) ); break; case PHOENIX_BUILD_UP_AIM: f_reflect = 0.0; // Fire doesn't reflect light, it emits it float perc_t = percent(); // in case compiler wont optimize, idk float aim_r = rand0 * 0.25 + 3.0 + 4.5 * perc_t * (1 - step(0.79, perc_t)) + 8.0 * step(0.81, perc_t) * perc_t; float aim_g = rand0 * 0.25 + 2.0 - 1.0 * perc_t * (1 - step(0.79, perc_t)) + 2.0 * step(0.81, perc_t) * perc_t; float aim_b = 1.4 * ((1 - perc_t) + step(0.74, perc_t)); vec3 dir_aim = inst_dir * 1.0; vec3 rand_pos_aim = (cross( (1.0 - 2.0 * step(0.0, rand2)) * normalize(inst_dir), vec3(0.0, 0.0, 1.0))); vec3 rand_fact = vec3(rand1 * 1, rand0 * 1, rand2 * 1); start_pos += vec3(0.0, 0.0, 5.0) + rand_fact; attr = Attr( spiral_motion( inst_dir + vec3(0.0, 0.0, -(6.0 - 3.0 * pow(perc_t, 2.5))) - rand_fact, 1.2 * rand9 * max(1.0 - perc_t, 0.0), perc_t, 6.0, inst_time * 8.0), vec3((1.9 * (1 - slow_start(0.2)))), vec4(aim_r, aim_g, aim_b, 1.0), spin_in_axis(vec3(rand6, rand7, rand8), perc_t * 10.0 + 3.0 * rand9) ); break; case CLAY_SHRAPNEL: float clay_color = 0.025 + 0.02 * rand1; attr = Attr( linear_motion( vec3(0), normalize(vec3(rand4, rand5, rand6)) * 15.0 + grav_vel(earth_gravity) ), vec3(5 * (1 - percent())), vec4(vec3(clay_color * 3, clay_color * 2, clay_color), 1), spin_in_axis(vec3(1,0,0),0) ); break; case AIRFLOW: perp_axis = normalize(cross(inst_dir, vec3(1.0, 0.0, 0.0))); attr = Attr( // offsets inst_dir * 0.2 * length(inst_dir) * percent() + inst_dir * percent() * 0.08, // scale vec3( 0.3 * length(inst_dir), 0.3 * length(inst_dir), 3.0 * length(inst_dir) * percent() * (1 - percent()) ), // color vec4(1.1, 1.1, 1.1, 0.3), // rotation spin_in_axis(perp_axis, asin(inst_dir.z / length(inst_dir)) + PI / 2.0) ); break; case SPORE: f_reflect = 0.0; attr = Attr( linear_motion( vec3(0), vec3(0, 0, -1.1) ) + vec3(sin((lifetime + rand9 * 0.1) * 0.5) * 3.0, sin((lifetime+ rand8 * 0.1) * 0.5) * 3.0, sin(lifetime * 0.5) * 1.5), vec3(0.4 + 0.4 * abs(sin(lifetime))), vec4(vec3(0.8, 6.0 + rand6 * 1.75, 7.5 + (1.75 + rand5 * 0.5)), 1), spin_in_axis(vec3(rand1, rand2, rand3), rand4 * 1.5 + lifetime) ); break; case SURPRISE_EGG: f_reflect = 0.0; // sparks should flicker, so it stops glowing for 18% of time 4 times per second, same thing used in 4th float of RGBA vector float egg_color1 = 2 + 1 * rand2 + 2 * step(0.18, fract(tick.x*4)); float egg_color2 = 0 + 1 * rand2 + 4 * step(0.18, fract(tick.x*4)); float egg_color3 = 2 + 6 * step(0.18, fract(tick.x*4)); attr = Attr( spiral_motion(vec3(0, 0, 5), abs(rand0) + abs(rand1) * percent() * 4.0, percent(), 8.0 * abs(rand2), rand3), vec3((2.5 * (1 - slow_start(0.05)))), vec4(egg_color1, egg_color2, egg_color3, 0.5 + 0.5 * step(0.18, fract(tick.x*4))), spin_in_axis(vec3(rand6, rand7, rand8), percent() * 10 + 3 * rand9) ); break; default: attr = Attr( linear_motion( vec3(rand0 * 0.25, rand1 * 0.25, 1.7 + rand5), vec3(rand2 * 0.1, rand3 * 0.1, 1.0 + rand4 * 0.5) ), vec3(exp_scale(-0.2)) * rand0, vec4(1), spin_in_axis(vec3(1,0,0),0) ); break; } // Temporary: use shrinking particles as a substitute for fading ones attr.scale *= pow(attr.col.a, 0.25); f_pos = start_pos + (v_pos * attr.scale * SCALE * mat3(attr.rot) + attr.offs); #ifdef EXPERIMENTAL_CURVEDWORLD f_pos.z -= pow(distance(f_pos.xy + focus_off.xy, focus_pos.xy + focus_off.xy) * 0.05, 2); #endif // First 3 normals are negative, next 3 are positive // TODO: Make particle normals match orientation vec4 normals[6] = vec4[]( vec4(-1,0,0,0), vec4(1,0,0,0), vec4(0,-1,0,0), vec4(0,1,0,0), vec4(0,0,-1,0), vec4(0,0,1,0) ); f_norm = // inst_pos * normalize(((normals[(v_norm_ao >> 0) & 0x7u]) * attr.rot).xyz); //vec3 col = vec3((uvec3(v_col) >> uvec3(0, 8, 16)) & uvec3(0xFFu)) / 255.0; f_col = vec4(attr.col.rgb, attr.col.a); gl_Position = all_mat * vec4(f_pos, 1); }