#version 330 core #include in vec3 f_pos; flat in vec3 f_norm; in vec3 f_col; in float f_light; out vec4 tgt_color; #include #include #include const float RENDER_DIST = 112.0; const float FADE_DIST = 32.0; void main() { vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); // vec4 vert_pos4 = view_mat * vec4(f_pos, 1.0); // vec3 view_dir = normalize(-vec3(vert_pos4)/* / vert_pos4.w*/); vec3 view_dir = -cam_to_frag; vec3 sun_dir = get_sun_dir(time_of_day.x); vec3 moon_dir = get_moon_dir(time_of_day.x); // float sun_light = get_sun_brightness(sun_dir); // float moon_light = get_moon_brightness(moon_dir); float sun_shade_frac = horizon_at(f_pos, sun_dir); float moon_shade_frac = horizon_at(f_pos, moon_dir); // Globbal illumination "estimate" used to light the faces of voxels which are parallel to the sun or moon (which is a very common occurrence). // Will be attenuated by k_d, which is assumed to carry any additional ambient occlusion information (e.g. about shadowing). // float ambient_sides = clamp(mix(0.5, 0.0, abs(dot(-f_norm, sun_dir)) * 10000.0), 0.0, 0.5); // NOTE: current assumption is that moon and sun shouldn't be out at the sae time. // This assumption is (or can at least easily be) wrong, but if we pretend it's true we avoids having to explicitly pass in a separate shadow // for the sun and moon (since they have different brightnesses / colors so the shadows shouldn't attenuate equally). float shade_frac = sun_shade_frac + moon_shade_frac; vec3 surf_color = /*srgb_to_linear*//*linear_to_srgb*/(f_col); float alpha = 1.0; const float n2 = 1.01; const float R_s = pow((1.0 - n2) / (1.0 + n2), 2); vec3 k_a = vec3(1.0); vec3 k_d = vec3(1.0); vec3 k_s = vec3(R_s); vec3 emitted_light, reflected_light; float point_shadow = shadow_at(f_pos, f_norm); float vert_light = f_light; vec3 light_frac = light_reflection_factor(f_norm/*vec3(0, 0, 1.0)*/, view_dir, vec3(0, 0, -1.0), vec3(1.0), vec3(R_s), alpha); /* light_frac += light_reflection_factor(f_norm, view_dir, vec3(1.0, 0, 0.0), vec3(1.0), vec3(1.0), 2.0); light_frac += light_reflection_factor(f_norm, view_dir, vec3(-1.0, 0, 0.0), vec3(1.0), vec3(1.0), 2.0); light_frac += light_reflection_factor(f_norm, view_dir, vec3(0.0, -1.0, 0.0), vec3(1.0), vec3(1.0), 2.0); light_frac += light_reflection_factor(f_norm, view_dir, vec3(0.0, 1.0, 0.0), vec3(1.0), vec3(1.0), 2.0); */ // vec3 light, diffuse_light, ambient_light; // vec3 emitted_light, reflected_light; // float point_shadow = shadow_at(f_pos,f_norm); // vec3 point_light = light_at(f_pos, f_norm); // vec3 surf_color = srgb_to_linear(vec3(0.2, 0.5, 1.0)); // vec3 cam_to_frag = normalize(f_pos - cam_pos.xyz); get_sun_diffuse2(f_norm, /*time_of_day.x, */sun_dir, moon_dir, /*cam_to_frag*/view_dir, k_a * (shade_frac * 0.5 + light_frac * 0.5), k_d, k_s, alpha, emitted_light, reflected_light); reflected_light *= vert_light * point_shadow * shade_frac; emitted_light *= vert_light * point_shadow; // get_sun_diffuse(f_norm, time_of_day.x, light, diffuse_light, ambient_light, 1.0); // float point_shadow = shadow_at(f_pos, f_norm); // diffuse_light *= f_light * point_shadow; // ambient_light *= f_light * point_shadow; // light += point_light; // diffuse_light += point_light; // reflected_light += point_light; lights_at(f_pos, f_norm, cam_to_frag, k_a, k_d, k_s, alpha, emitted_light, reflected_light); /* vec3 point_light = light_at(f_pos, f_norm); emitted_light += point_light; reflected_light += point_light; */ surf_color = illuminate(surf_color * emitted_light, surf_color * reflected_light); // vec3 surf_color = illuminate(f_col, light, diffuse_light, ambient_light); float fog_level = fog(f_pos.xyz, focus_pos.xyz, medium.x); vec4 clouds; vec3 fog_color = get_sky_color(cam_to_frag/*view_dir*/, time_of_day.x, cam_pos.xyz, f_pos, 0.5, true, clouds); vec3 color = mix(mix(surf_color, fog_color, fog_level), clouds.rgb, clouds.a); tgt_color = vec4(color, 1.0 - clamp((distance(focus_pos.xy, f_pos.xy) - (RENDER_DIST - FADE_DIST)) / FADE_DIST, 0, 1)); }