use common::{ comp::{ body::ship::figuredata::VOXEL_COLLIDER_MANIFEST, BeamSegment, CharacterState, Collider, Gravity, Mass, Mounting, Ori, PhysicsState, Pos, PreviousPhysCache, Projectile, Scale, Shockwave, Sticky, Vel, }, consts::{FRIC_GROUND, GRAVITY}, event::{EventBus, ServerEvent}, resources::DeltaTime, terrain::{Block, TerrainGrid}, uid::Uid, vol::{BaseVol, ReadVol}, }; use common_base::{prof_span, span}; use common_ecs::{Job, Origin, ParMode, Phase, PhysicsMetrics, System}; use hashbrown::HashMap; use rayon::iter::ParallelIterator; use specs::{ shred::{ResourceId, World}, Entities, Entity, Join, ParJoin, Read, ReadExpect, ReadStorage, SystemData, WriteExpect, WriteStorage, }; use std::ops::Range; use vek::*; pub const BOUYANCY: f32 = 1.0; // Friction values used for linear damping. They are unitless quantities. The // value of these quantities must be between zero and one. They represent the // amount an object will slow down within 1/60th of a second. Eg. if the // friction is 0.01, and the speed is 1.0, then after 1/60th of a second the // speed will be 0.99. after 1 second the speed will be 0.54, which is 0.99 ^ // 60. pub const FRIC_AIR: f32 = 0.0125; pub const FRIC_FLUID: f32 = 0.4; // Integrates forces, calculates the new velocity based off of the old velocity // dt = delta time // lv = linear velocity // damp = linear damping // Friction is a type of damping. fn integrate_forces(dt: f32, mut lv: Vec3, grav: f32, damp: f32) -> Vec3 { // this is not linear damping, because it is proportional to the original // velocity this "linear" damping in in fact, quite exponential. and thus // must be interpolated accordingly let linear_damp = (1.0 - damp.min(1.0)).powf(dt * 60.0); // TODO: investigate if we can have air friction provide the neccessary limits // here lv.z = (lv.z - grav * dt).max(-80.0).min(lv.z); lv * linear_damp } fn calc_z_limit( char_state_maybe: Option<&CharacterState>, collider: Option<&Collider>, ) -> (f32, f32) { let modifier = if char_state_maybe.map_or(false, |c_s| c_s.is_dodge()) { 0.5 } else { 1.0 }; collider .map(|c| c.get_z_limits(modifier)) .unwrap_or((-0.5 * modifier, 0.5 * modifier)) } /// This system applies forces and calculates new positions and velocities. #[derive(Default)] pub struct Sys; #[derive(SystemData)] pub struct PhysicsSystemDataRead<'a> { entities: Entities<'a>, uids: ReadStorage<'a, Uid>, terrain: ReadExpect<'a, TerrainGrid>, dt: Read<'a, DeltaTime>, event_bus: Read<'a, EventBus>, scales: ReadStorage<'a, Scale>, stickies: ReadStorage<'a, Sticky>, masses: ReadStorage<'a, Mass>, colliders: ReadStorage<'a, Collider>, gravities: ReadStorage<'a, Gravity>, mountings: ReadStorage<'a, Mounting>, projectiles: ReadStorage<'a, Projectile>, beams: ReadStorage<'a, BeamSegment>, shockwaves: ReadStorage<'a, Shockwave>, char_states: ReadStorage<'a, CharacterState>, } #[derive(SystemData)] pub struct PhysicsSystemDataWrite<'a> { physics_metrics: WriteExpect<'a, PhysicsMetrics>, physics_states: WriteStorage<'a, PhysicsState>, positions: WriteStorage<'a, Pos>, velocities: WriteStorage<'a, Vel>, orientations: WriteStorage<'a, Ori>, previous_phys_cache: WriteStorage<'a, PreviousPhysCache>, } #[derive(SystemData)] pub struct PhysicsSystemData<'a> { r: PhysicsSystemDataRead<'a>, w: PhysicsSystemDataWrite<'a>, } impl<'a> PhysicsSystemData<'a> { /// Add/reset physics state components fn reset(&mut self) { span!(guard, "Add/reset physics state components"); for (entity, _, _, _, _) in ( &self.r.entities, &self.r.colliders, &self.w.positions, &self.w.velocities, &self.w.orientations, ) .join() { let _ = self .w .physics_states .entry(entity) .map(|e| e.or_insert_with(Default::default)); } drop(guard); } fn maintain_pushback_cache(&mut self) { span!(guard, "Maintain pushback cache"); //Add PreviousPhysCache for all relevant entities for entity in ( &self.r.entities, &self.w.velocities, &self.w.positions, !&self.w.previous_phys_cache, !&self.r.mountings, !&self.r.beams, !&self.r.shockwaves, ) .join() .map(|(e, _, _, _, _, _, _)| e) .collect::>() { let _ = self .w .previous_phys_cache .insert(entity, PreviousPhysCache { velocity_dt: Vec3::zero(), center: Vec3::zero(), collision_boundary: 0.0, scale: 0.0, scaled_radius: 0.0, }); } //Update PreviousPhysCache for (_, vel, position, mut phys_cache, collider, scale, cs, _, _, _) in ( &self.r.entities, &self.w.velocities, &self.w.positions, &mut self.w.previous_phys_cache, self.r.colliders.maybe(), self.r.scales.maybe(), self.r.char_states.maybe(), !&self.r.mountings, !&self.r.beams, !&self.r.shockwaves, ) .join() { let scale = scale.map(|s| s.0).unwrap_or(1.0); let z_limits = calc_z_limit(cs, collider); let z_limits = (z_limits.0 * scale, z_limits.1 * scale); let half_height = (z_limits.1 - z_limits.0) / 2.0; phys_cache.velocity_dt = vel.0 * self.r.dt.0; let entity_center = position.0 + Vec3::new(0.0, z_limits.0 + half_height, 0.0); let flat_radius = collider.map(|c| c.get_radius()).unwrap_or(0.5) * scale; let radius = (flat_radius.powi(2) + half_height.powi(2)).sqrt(); // Move center to the middle between OLD and OLD+VEL_DT so that we can reduce // the collision_boundary phys_cache.center = entity_center + phys_cache.velocity_dt / 2.0; phys_cache.collision_boundary = radius + (phys_cache.velocity_dt / 2.0).magnitude(); phys_cache.scale = scale; phys_cache.scaled_radius = flat_radius; } drop(guard); } fn apply_pushback(&mut self, job: &mut Job) { span!(guard, "Apply pushback"); job.cpu_stats.measure(ParMode::Rayon); let PhysicsSystemData { r: ref psdr, w: ref mut psdw, } = self; let (positions, previous_phys_cache) = (&psdw.positions, &psdw.previous_phys_cache); let metrics = ( &psdr.entities, positions, &mut psdw.velocities, previous_phys_cache, psdr.masses.maybe(), psdr.colliders.maybe(), !&psdr.mountings, psdr.stickies.maybe(), &mut psdw.physics_states, // TODO: if we need to avoid collisions for other things consider moving whether it // should interact into the collider component or into a separate component psdr.projectiles.maybe(), psdr.char_states.maybe(), ) .par_join() .filter(|(_, _, _, _, _, _, _, sticky, physics, _, _)| { sticky.is_none() || (physics.on_wall.is_none() && !physics.on_ground) }) .map(|(e, p, v, vd, m, c, _, _, ph, pr, c_s)| (e, p, v, vd, m, c, ph, pr, c_s)) .map_init( || { prof_span!(guard, "physics e<>e rayon job"); guard }, |_guard, ( entity, pos, vel, previous_cache, mass, collider, physics, projectile, char_state_maybe, )| { let z_limits = calc_z_limit(char_state_maybe, collider); let mass = mass.map(|m| m.0).unwrap_or(previous_cache.scale); // Resets touch_entities in physics physics.touch_entities.clear(); let is_projectile = projectile.is_some(); let mut vel_delta = Vec3::zero(); let mut entity_entity_collision_checks = 0; let mut entity_entity_collisions = 0; for ( entity_other, other, pos_other, previous_cache_other, mass_other, collider_other, _, _, _, _, char_state_other_maybe, ) in ( &psdr.entities, &psdr.uids, positions, previous_phys_cache, psdr.masses.maybe(), psdr.colliders.maybe(), !&psdr.projectiles, !&psdr.mountings, !&psdr.beams, !&psdr.shockwaves, psdr.char_states.maybe(), ) .join() { let collision_boundary = previous_cache.collision_boundary + previous_cache_other.collision_boundary; if previous_cache .center .distance_squared(previous_cache_other.center) > collision_boundary.powi(2) || entity == entity_other { continue; } let collision_dist = previous_cache.scaled_radius + previous_cache_other.scaled_radius; let z_limits_other = calc_z_limit(char_state_other_maybe, collider_other); let mass_other = mass_other .map(|m| m.0) .unwrap_or(previous_cache_other.scale); //This check after the pos check, as we currently don't have that many // massless entites [citation needed] if mass_other == 0.0 { continue; } entity_entity_collision_checks += 1; const MIN_COLLISION_DIST: f32 = 0.3; let increments = ((previous_cache.velocity_dt - previous_cache_other.velocity_dt) .magnitude() / MIN_COLLISION_DIST) .max(1.0) .ceil() as usize; let step_delta = 1.0 / increments as f32; let mut collided = false; for i in 0..increments { let factor = i as f32 * step_delta; let pos = pos.0 + previous_cache.velocity_dt * factor; let pos_other = pos_other.0 + previous_cache_other.velocity_dt * factor; let diff = pos.xy() - pos_other.xy(); if diff.magnitude_squared() <= collision_dist.powi(2) && pos.z + z_limits.1 * previous_cache.scale >= pos_other.z + z_limits_other.0 * previous_cache_other.scale && pos.z + z_limits.0 * previous_cache.scale <= pos_other.z + z_limits_other.1 * previous_cache_other.scale { if !collided { physics.touch_entities.push(*other); entity_entity_collisions += 1; } // Don't apply repulsive force to projectiles or if we're colliding // with a terrain-like entity, or if we are a terrain-like entity if diff.magnitude_squared() > 0.0 && !is_projectile && !matches!(collider_other, Some(Collider::Voxel { .. })) && !matches!(collider, Some(Collider::Voxel { .. })) { let force = 400.0 * (collision_dist - diff.magnitude()) * mass_other / (mass + mass_other); vel_delta += Vec3::from(diff.normalized()) * force * step_delta; } collided = true; } } } // Change velocity vel.0 += vel_delta * psdr.dt.0; // Metrics PhysicsMetrics { entity_entity_collision_checks, entity_entity_collisions, } }, ) .reduce(PhysicsMetrics::default, |old, new| PhysicsMetrics { entity_entity_collision_checks: old.entity_entity_collision_checks + new.entity_entity_collision_checks, entity_entity_collisions: old.entity_entity_collisions + new.entity_entity_collisions, }); psdw.physics_metrics.entity_entity_collision_checks = metrics.entity_entity_collision_checks; psdw.physics_metrics.entity_entity_collisions = metrics.entity_entity_collisions; drop(guard); } fn handle_movement_and_terrain(&mut self, job: &mut Job) { let PhysicsSystemData { r: ref psdr, w: ref mut psdw, } = self; // Apply movement inputs span!(guard, "Apply movement and terrain collision"); let (positions, velocities, previous_phys_cache, orientations) = (&psdw.positions, &psdw.velocities, &psdw.previous_phys_cache, &psdw.orientations); let (pos_writes, vel_writes, land_on_grounds) = ( &psdr.entities, psdr.scales.maybe(), psdr.stickies.maybe(), &psdr.colliders, positions, velocities, orientations, &mut psdw.physics_states, previous_phys_cache, !&psdr.mountings, ) .par_join() .fold( || (Vec::new(), Vec::new(), Vec::new()), |(mut pos_writes, mut vel_writes, mut land_on_grounds), ( entity, scale, sticky, collider, pos, vel, _ori, mut physics_state, previous_cache, _, )| { // defer the writes of positions to allow an inner loop over terrain-like // entities let old_pos = *pos; let mut pos = *pos; let mut vel = *vel; if sticky.is_some() && physics_state.on_surface().is_some() { vel.0 = Vec3::zero(); return (pos_writes, vel_writes, land_on_grounds); } let scale = if let Collider::Voxel { .. } = collider { scale.map(|s| s.0).unwrap_or(1.0) } else { // TODO: Use scale & actual proportions when pathfinding is good // enough to manage irregular entity sizes 1.0 }; let old_vel = vel; // Integrate forces // Friction is assumed to be a constant dependent on location let friction = if physics_state.on_ground { 0.0 } else { FRIC_AIR } // .max(if physics_state.on_ground { // FRIC_GROUND // } else { // 0.0 // }) .max(if physics_state.in_liquid.is_some() { FRIC_FLUID } else { 0.0 }); let in_loaded_chunk = psdr .terrain .get_key(psdr.terrain.pos_key(pos.0.map(|e| e.floor() as i32))) .is_some(); let downward_force = if !in_loaded_chunk { 0.0 // No gravity in unloaded chunks } else if physics_state .in_liquid .map(|depth| depth > 0.75) .unwrap_or(false) { (1.0 - BOUYANCY) * GRAVITY } else { GRAVITY } * psdr.gravities.get(entity).map(|g| g.0).unwrap_or_default(); vel.0 = integrate_forces(psdr.dt.0, vel.0, downward_force, friction); // Don't move if we're not in a loaded chunk let pos_delta = if in_loaded_chunk { // this is an approximation that allows most framerates to // behave in a similar manner. let dt_lerp = 0.2; (vel.0 * dt_lerp + old_vel.0 * (1.0 - dt_lerp)) * psdr.dt.0 } else { Vec3::zero() }; match &*collider { Collider::Voxel { .. } => { // for now, treat entities with voxel colliders as their bounding // cylinders for the purposes of colliding them with terrain // Actually no, make them smaller to avoid lag let radius = collider.get_radius() * scale * 0.1; let (z_min, z_max) = collider.get_z_limits(scale); let cylinder = (radius, z_min, z_max); cylinder_voxel_collision( cylinder, &*psdr.terrain, entity, &mut pos, pos_delta, &mut vel, &mut physics_state, Vec3::zero(), &psdr.dt, true, |entity, vel| land_on_grounds.push((entity, vel)), ); }, Collider::Box { radius, z_min, z_max, } => { // Scale collider let radius = radius.min(0.45) * scale; let z_min = *z_min * scale; let z_max = z_max.clamped(1.2, 1.95) * scale; let cylinder = (radius, z_min, z_max); cylinder_voxel_collision( cylinder, &*psdr.terrain, entity, &mut pos, pos_delta, &mut vel, &mut physics_state, Vec3::zero(), &psdr.dt, true, |entity, vel| land_on_grounds.push((entity, vel)), ); }, Collider::Point => { let (dist, block) = psdr .terrain .ray(pos.0, pos.0 + pos_delta) .until(|block: &Block| block.is_filled()) .ignore_error() .cast(); pos.0 += pos_delta.try_normalized().unwrap_or(Vec3::zero()) * dist; // Can't fail since we do ignore_error above if block.unwrap().is_some() { let block_center = pos.0.map(|e| e.floor()) + 0.5; let block_rpos = (pos.0 - block_center) .try_normalized() .unwrap_or(Vec3::zero()); // See whether we're on the top/bottom of a block, or the side if block_rpos.z.abs() > block_rpos.xy().map(|e| e.abs()).reduce_partial_max() { if block_rpos.z > 0.0 { physics_state.on_ground = true; } else { physics_state.on_ceiling = true; } vel.0.z = 0.0; } else { physics_state.on_wall = Some(if block_rpos.x.abs() > block_rpos.y.abs() { vel.0.x = 0.0; Vec3::unit_x() * -block_rpos.x.signum() } else { vel.0.y = 0.0; Vec3::unit_y() * -block_rpos.y.signum() }); } } physics_state.in_liquid = psdr .terrain .get(pos.0.map(|e| e.floor() as i32)) .ok() .and_then(|vox| vox.is_liquid().then_some(1.0)); }, } // Collide with terrain-like entities for ( entity_other, other, pos_other, vel_other, previous_cache_other, mass_other, collider_other, ori_other, _, _, _, _, char_state_other_maybe, ) in ( &psdr.entities, &psdr.uids, positions, velocities, previous_phys_cache, psdr.masses.maybe(), &psdr.colliders, orientations, !&psdr.projectiles, !&psdr.mountings, !&psdr.beams, !&psdr.shockwaves, psdr.char_states.maybe(), ) .join() { /*let collision_boundary = previous_cache.collision_boundary + previous_cache_other.collision_boundary; if previous_cache .center .distance_squared(previous_cache_other.center) > collision_boundary.powi(2) { continue; }*/ if entity == entity_other { continue; } if let Collider::Voxel { id } = collider_other { // use bounding cylinder regardless of our collider // TODO: extract point-terrain collision above to its own function let radius = collider.get_radius(); let (z_min, z_max) = collider.get_z_limits(1.0); let radius = radius.min(0.45) * scale; let z_min = z_min * scale; let z_max = z_max.clamped(1.2, 1.95) * scale; if let Some(voxel_collider) = VOXEL_COLLIDER_MANIFEST.read().colliders.get(id) { let mut physics_state_delta = physics_state.clone(); // deliberately don't use scale yet here, because the 11.0/0.8 // thing is in the comp::Scale for visual reasons let transform_from = Mat4::::translation_3d(pos_other.0) * Mat4::from(ori_other.0) * Mat4::::translation_3d(voxel_collider.translation); let transform_to = transform_from.inverted(); pos.0 = transform_to.mul_point(pos.0); vel.0 = transform_to.mul_direction(vel.0); let cylinder = (radius, z_min, z_max); cylinder_voxel_collision( cylinder, &voxel_collider.dyna, entity, &mut pos, transform_to.mul_direction(pos_delta), &mut vel, &mut physics_state_delta, transform_to.mul_direction(vel_other.0), &psdr.dt, false, |entity, vel| land_on_grounds.push((entity, Vel(transform_from.mul_direction(vel.0)))), ); pos.0 = transform_from.mul_point(pos.0); vel.0 = transform_from.mul_direction(vel.0); // union in the state updates, so that the state isn't just based on // the most recent terrain that collision was attempted with if physics_state_delta.on_ground { physics_state.ground_vel = vel_other.0; } physics_state.on_ground |= physics_state_delta.on_ground; physics_state.on_ceiling |= physics_state_delta.on_ceiling; physics_state.on_wall = physics_state.on_wall.or(physics_state_delta.on_wall); physics_state .touch_entities .append(&mut physics_state_delta.touch_entities); physics_state.in_liquid = match (physics_state.in_liquid, physics_state_delta.in_liquid) { // this match computes `x <|> y <|> liftA2 max x y` (Some(x), Some(y)) => Some(x.max(y)), (_, y @ Some(_)) => y, _ => None, }; } } } if pos != old_pos { pos_writes.push((entity, pos)); } if vel != old_vel { vel_writes.push((entity, vel)); } (pos_writes, vel_writes, land_on_grounds) }, ) .reduce( || (Vec::new(), Vec::new(), Vec::new()), |(mut pos_writes_a, mut vel_writes_a, mut land_on_grounds_a), (mut pos_writes_b, mut vel_writes_b, mut land_on_grounds_b)| { pos_writes_a.append(&mut pos_writes_b); vel_writes_a.append(&mut vel_writes_b); land_on_grounds_a.append(&mut land_on_grounds_b); (pos_writes_a, vel_writes_a, land_on_grounds_a) }, ); drop(guard); job.cpu_stats.measure(ParMode::Single); let pos_writes: HashMap = pos_writes.into_iter().collect(); let vel_writes: HashMap = vel_writes.into_iter().collect(); for (entity, pos, vel) in (&psdr.entities, &mut psdw.positions, &mut psdw.velocities).join() { if let Some(new_pos) = pos_writes.get(&entity) { *pos = *new_pos; } if let Some(new_vel) = vel_writes.get(&entity) { *vel = *new_vel; } } let mut event_emitter = psdr.event_bus.emitter(); land_on_grounds.into_iter().for_each(|(entity, vel)| { event_emitter.emit(ServerEvent::LandOnGround { entity, vel: vel.0 }); }); } } impl<'a> System<'a> for Sys { type SystemData = PhysicsSystemData<'a>; const NAME: &'static str = "phys"; const ORIGIN: Origin = Origin::Common; const PHASE: Phase = Phase::Create; #[allow(clippy::or_fun_call)] // TODO: Pending review in #587 #[allow(clippy::blocks_in_if_conditions)] // TODO: Pending review in #587 fn run(job: &mut Job, mut psd: Self::SystemData) { psd.reset(); // Apply pushback // // Note: We now do this first because we project velocity ahead. This is slighty // imperfect and implies that we might get edge-cases where entities // standing right next to the edge of a wall may get hit by projectiles // fired into the wall very close to them. However, this sort of thing is // already possible with poorly-defined hitboxes anyway so it's not too // much of a concern. // // If this situation becomes a problem, this code should be integrated with the // terrain collision code below, although that's not trivial to do since // it means the step needs to take into account the speeds of both // entities. psd.maintain_pushback_cache(); psd.apply_pushback(job); psd.handle_movement_and_terrain(job); } } fn cylinder_voxel_collision<'a, T: BaseVol + ReadVol>( cylinder: (f32, f32, f32), terrain: &'a T, entity: Entity, pos: &mut Pos, mut pos_delta: Vec3, vel: &mut Vel, physics_state: &mut PhysicsState, ground_vel: Vec3, dt: &DeltaTime, apply_velocity_step: bool, // Stupid hack mut land_on_ground: impl FnMut(Entity, Vel), ) { let (radius, z_min, z_max) = cylinder; // Probe distances let hdist = radius.ceil() as i32; // Neighbouring blocks iterator let near_iter = (-hdist..hdist + 1) .map(move |i| { (-hdist..hdist + 1).map(move |j| { (1 - Block::MAX_HEIGHT.ceil() as i32 + z_min.floor() as i32 ..z_max.ceil() as i32 + 1) .map(move |k| (i, j, k)) }) }) .flatten() .flatten(); // Function for iterating over the blocks the player at a specific position // collides with fn collision_iter<'a, T: BaseVol + ReadVol>( pos: Vec3, terrain: &'a T, hit: &'a impl Fn(&Block) -> bool, height: &'a impl Fn(&Block) -> f32, near_iter: impl Iterator + 'a, radius: f32, z_range: Range, ) -> impl Iterator> + 'a { near_iter.filter_map(move |(i, j, k)| { let block_pos = pos.map(|e| e.floor() as i32) + Vec3::new(i, j, k); if let Some(block) = terrain.get(block_pos).ok().copied().filter(hit) { let player_aabb = Aabb { min: pos + Vec3::new(-radius, -radius, z_range.start), max: pos + Vec3::new(radius, radius, z_range.end), }; let block_aabb = Aabb { min: block_pos.map(|e| e as f32), max: block_pos.map(|e| e as f32) + Vec3::new(1.0, 1.0, height(&block)), }; if player_aabb.collides_with_aabb(block_aabb) { return Some(block_aabb); } } None }) } let z_range = z_min..z_max; // Function for determining whether the player at a specific position collides // with blocks with the given criteria fn collision_with<'a, T: BaseVol + ReadVol>( pos: Vec3, terrain: &'a T, hit: impl Fn(&Block) -> bool, near_iter: impl Iterator + 'a, radius: f32, z_range: Range, ) -> bool { collision_iter( pos, terrain, &|block| block.is_solid() && hit(block), &Block::solid_height, near_iter, radius, z_range, ) .count() > 0 } let was_on_ground = physics_state.on_ground; physics_state.on_ground = false; let mut on_ground = false; let mut on_ceiling = false; let mut attempts = 0; // Don't loop infinitely here // Don't jump too far at once let increments = (pos_delta.map(|e| e.abs()).reduce_partial_max() / 0.3) .ceil() .max(1.0); let old_pos = pos.0; fn block_true(_: &Block) -> bool { true } for _ in 0..increments as usize { if apply_velocity_step { pos.0 += pos_delta / increments; } const MAX_ATTEMPTS: usize = 16; // While the player is colliding with the terrain... while collision_with( pos.0, &terrain, block_true, near_iter.clone(), radius, z_range.clone(), ) && attempts < MAX_ATTEMPTS { // Calculate the player's AABB let player_aabb = Aabb { min: pos.0 + Vec3::new(-radius, -radius, z_min), max: pos.0 + Vec3::new(radius, radius, z_max), }; // Determine the block that we are colliding with most (based on minimum // collision axis) let (_block_pos, block_aabb, block_height) = near_iter .clone() // Calculate the block's position in world space .map(|(i, j, k)| pos.0.map(|e| e.floor() as i32) + Vec3::new(i, j, k)) // Make sure the block is actually solid .filter_map(|block_pos| { if let Some(block) = terrain .get(block_pos) .ok() .filter(|block| block.is_solid()) { // Calculate block AABB Some(( block_pos, Aabb { min: block_pos.map(|e| e as f32), max: block_pos.map(|e| e as f32) + Vec3::new(1.0, 1.0, block.solid_height()), }, block.solid_height(), )) } else { None } }) // Determine whether the block's AABB collides with the player's AABB .filter(|(_, block_aabb, _)| block_aabb.collides_with_aabb(player_aabb)) // Find the maximum of the minimum collision axes (this bit is weird, trust me that it works) .min_by_key(|(_, block_aabb, _)| { ((block_aabb.center() - player_aabb.center() - Vec3::unit_z() * 0.5) .map(|e| e.abs()) .sum() * 1_000_000.0) as i32 }) .expect("Collision detected, but no colliding blocks found!"); // Find the intrusion vector of the collision let dir = player_aabb.collision_vector_with_aabb(block_aabb); // Determine an appropriate resolution vector (i.e: the minimum distance // needed to push out of the block) let max_axis = dir.map(|e| e.abs()).reduce_partial_min(); let resolve_dir = -dir.map(|e| { if e.abs().to_bits() == max_axis.to_bits() { e } else { 0.0 } }); // When the resolution direction is pointing upwards, we must be on the // ground if resolve_dir.z > 0.0 && vel.0.z <= 0.0 { on_ground = true; if !was_on_ground { land_on_ground(entity, *vel); } } else if resolve_dir.z < 0.0 && vel.0.z >= 0.0 { on_ceiling = true; } // When the resolution direction is non-vertical, we must be colliding // with a wall If the space above is free... if !collision_with(Vec3::new(pos.0.x, pos.0.y, (pos.0.z + 0.1).ceil()), &terrain, block_true, near_iter.clone(), radius, z_range.clone()) // ...and we're being pushed out horizontally... && resolve_dir.z == 0.0 // ...and the vertical resolution direction is sufficiently great... && -dir.z > 0.1 // ...and we're falling/standing OR there is a block *directly* beneath our current origin (note: not hitbox)... && (vel.0.z <= 0.0 || terrain .get((pos.0 - Vec3::unit_z() * 0.1).map(|e| e.floor() as i32)) .map(|block| block.is_solid()) .unwrap_or(false)) // ...and there is a collision with a block beneath our current hitbox... && collision_with( pos.0 + resolve_dir - Vec3::unit_z() * 1.05, &terrain, block_true, near_iter.clone(), radius, z_range.clone(), ) { // ...block-hop! pos.0.z = (pos.0.z + 0.1).floor() + block_height; vel.0.z = 0.0; on_ground = true; break; } else { // Correct the velocity vel.0 = vel.0.map2( resolve_dir, |e, d| { if d * e.signum() < 0.0 { 0.0 } else { e } }, ); pos_delta *= resolve_dir.map(|e| if e != 0.0 { 0.0 } else { 1.0 }); } // Resolve the collision normally pos.0 += resolve_dir; attempts += 1; } if attempts == MAX_ATTEMPTS { vel.0 = Vec3::zero(); pos.0 = old_pos; break; } } if on_ceiling { physics_state.on_ceiling = true; } if on_ground { physics_state.on_ground = true; vel.0 = ground_vel + (vel.0 - ground_vel) * (1.0 - FRIC_GROUND.min(1.0)).powf(dt.0 * 60.0); physics_state.ground_vel = ground_vel; // If the space below us is free, then "snap" to the ground } else if collision_with( pos.0 - Vec3::unit_z() * 1.05, &terrain, block_true, near_iter.clone(), radius, z_range.clone(), ) && vel.0.z < 0.0 && vel.0.z > -1.5 && was_on_ground && !collision_with( pos.0 - Vec3::unit_z() * 0.05, &terrain, |block| block.solid_height() >= (pos.0.z - 0.05).rem_euclid(1.0), near_iter.clone(), radius, z_range.clone(), ) { let snap_height = terrain .get(Vec3::new(pos.0.x, pos.0.y, pos.0.z - 0.05).map(|e| e.floor() as i32)) .ok() .filter(|block| block.is_solid()) .map(|block| block.solid_height()) .unwrap_or(0.0); pos.0.z = (pos.0.z - 0.05).floor() + snap_height; physics_state.on_ground = true; } let dirs = [ Vec3::unit_x(), Vec3::unit_y(), -Vec3::unit_x(), -Vec3::unit_y(), ]; if let (wall_dir, true) = dirs.iter().fold((Vec3::zero(), false), |(a, hit), dir| { if collision_with( pos.0 + *dir * 0.01, &terrain, block_true, near_iter.clone(), radius, z_range.clone(), ) { (a + dir, true) } else { (a, hit) } }) { physics_state.on_wall = Some(wall_dir); } else { physics_state.on_wall = None; } // Figure out if we're in water physics_state.in_liquid = collision_iter( pos.0, &*terrain, &|block| block.is_liquid(), // The liquid part of a liquid block always extends 1 block high. &|_block| 1.0, near_iter.clone(), radius, z_min..z_max, ) .max_by_key(|block_aabb| (block_aabb.max.z * 100.0) as i32) .map(|block_aabb| block_aabb.max.z - pos.0.z); }