using System;
using System.Collections.Generic;
using System.Linq;
using System.Reactive.Subjects;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
namespace Wabbajack.Common.CSP
{
public static class Pipelines
{
///
/// Creates a pipeline that takes items from `from` transforms them with the pipeline given by `transform` and puts
/// the resulting values onto `to`. The pipeline may create 0 or more items for every input item and they will be
/// spooled onto `to` in a undefined order. `n` determines how many parallel tasks will be running at once. Each of
/// these tasks maintains its own transformation pipeline, so `transform` will be called once for every `n`. Completing
/// a `transform` pipeline has no effect.
///
///
///
///
///
///
///
///
///
///
///
public static async Task UnorderedPipeline(
this IReadPort from,
int parallelism,
IWritePort to,
Func, IObservable> transform,
bool propagateClose = true)
{
async Task Pump()
{
var pipeline = new Subject();
var buffer = new List();
var dest = transform(pipeline);
dest.Subscribe(itm => buffer.Add(itm));
while (true)
{
var (is_open, tval) = await from.Take();
if (is_open)
{
pipeline.OnNext(tval);
foreach (var pval in buffer)
{
var is_put_open = await to.Put(pval);
if (is_put_open) continue;
if (propagateClose) @from.Close();
return;
}
buffer.Clear();
}
else
{
pipeline.OnCompleted();
if (buffer.Count > 0)
{
foreach (var pval in buffer)
if (!await to.Put(pval))
break;
}
break;
}
}
}
await Task.WhenAll(Enumerable.Range(0, parallelism)
.Select(idx => Task.Run(Pump)));
if (propagateClose)
{
from.Close();
to.Close();
}
}
public static async Task UnorderedPipeline(
this IReadPort from,
IWritePort to,
Func> f,
bool propagateClose = true)
{
await UnorderedPipeline(from, Environment.ProcessorCount, to, f, propagateClose);
}
public static async Task UnorderedPipeline(
this IReadPort from,
int parallelism,
IWritePort to,
Func> f,
bool propagateClose = true)
{
async Task Pump()
{
while (true)
{
var (is_open, job) = await from.Take();
if (!is_open) break;
var putIsOpen = await to.Put(await f(job));
if (!putIsOpen) return;
}
}
await Task.WhenAll(Enumerable.Range(0, parallelism)
.Select(idx => Task.Run(Pump)));
if (propagateClose)
{
from.Close();
to.Close();
}
}
public static IReadPort UnorderedPipelineRx(
this IReadPort from,
Func, IObservable> f,
bool propagateClose = true)
{
var parallelism = Environment.ProcessorCount;
var to = Channel.Create(parallelism * 2);
var pipeline = from.UnorderedPipeline(parallelism, to, f);
return to;
}
public static IReadPort UnorderedPipelineSync(
this IReadPort from,
Func f,
bool propagateClose = true)
{
var parallelism = Environment.ProcessorCount;
var to = Channel.Create(parallelism * 2);
async Task Pump()
{
while (true)
{
var (is_open, job) = await from.Take();
if (!is_open) break;
try
{
var putIsOpen = await to.Put(f(job));
if (!putIsOpen) return;
}
catch (Exception ex)
{
}
}
}
Task.Run(async () =>
{
await Task.WhenAll(Enumerable.Range(0, parallelism)
.Select(idx => Task.Run(Pump)));
if (propagateClose)
{
from.Close();
to.Close();
}
});
return to;
}
public static async Task UnorderedThreadedPipeline(
this IReadPort from,
int parallelism,
IWritePort to,
Func f,
bool propagateClose = true)
{
Task Pump()
{
var tcs = new TaskCompletionSource();
var th = new Thread(() =>
{
while (true)
{
var (is_open, job) = from.Take().Result;
if (!is_open) break;
var putIsOpen = to.Put(f(job)).Result;
if (!putIsOpen) return;
}
tcs.SetResult(true);
}) {Priority = ThreadPriority.BelowNormal};
th.Start();
return tcs.Task;
}
await Task.WhenAll(Enumerable.Range(0, parallelism)
.Select(idx => Task.Run(Pump)));
if (propagateClose)
{
from.Close();
to.Close();
}
}
}
}