wabbajack/Wabbajack.Common/Extensions/RxExt.cs
2020-04-03 18:23:13 -05:00

240 lines
8.8 KiB
C#

using System;
using System.Linq;
using System.Reactive;
using System.Reactive.Concurrency;
using System.Reactive.Disposables;
using System.Reactive.Linq;
using System.Threading.Tasks;
namespace Wabbajack
{
public static class RxExt
{
/// <summary>
/// Convenience function that discards events that are null
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="source"></param>
/// <returns>Source events that are not null</returns>
public static IObservable<T> NotNull<T>(this IObservable<T?> source)
where T : class
{
return source
.Where(u => u != null)
.Select(u => u!);
}
/// <summary>
/// Converts any observable to type Unit. Useful for when you care that a signal occurred,
/// but don't care about what its value is downstream.
/// </summary>
/// <returns>An observable that returns Unit anytime the source signal fires an event.</returns>
public static IObservable<Unit> Unit<T>(this IObservable<T> source)
{
return source.Select(_ => System.Reactive.Unit.Default);
}
/// <summary>
/// Convenience operator to subscribe to the source observable, only when a second "switch" observable is on.
/// When the switch is on, the source will be subscribed to, and its updates passed through.
/// When the switch is off, the subscription to the source observable will be stopped, and no signal will be published.
/// </summary>
/// <param name="source">Source observable to subscribe to if on</param>
/// <param name="filterSwitch">On/Off signal of whether to subscribe to source observable</param>
/// <returns>Observable that publishes data from source, if the switch is on.</returns>
public static IObservable<T> FlowSwitch<T>(this IObservable<T> source, IObservable<bool> filterSwitch)
{
return filterSwitch
.DistinctUntilChanged()
.Select(on =>
{
if (on)
{
return source;
}
else
{
return Observable.Empty<T>();
}
})
.Switch();
}
/// <summary>
/// Convenience operator to subscribe to the source observable, only when a second "switch" observable is on.
/// When the switch is on, the source will be subscribed to, and its updates passed through.
/// When the switch is off, the subscription to the source observable will be stopped, and no signal will be published.
/// </summary>
/// <param name="source">Source observable to subscribe to if on</param>
/// <param name="filterSwitch">On/Off signal of whether to subscribe to source observable</param>
/// <param name="valueOnOff">Value to fire when switching off</param>
/// <returns>Observable that publishes data from source, if the switch is on.</returns>
public static IObservable<T> FlowSwitch<T>(this IObservable<T> source, IObservable<bool> filterSwitch, T valueWhenOff)
{
return filterSwitch
.DistinctUntilChanged()
.Select(on =>
{
if (on)
{
return source;
}
else
{
return Observable.Return<T>(valueWhenOff);
}
})
.Switch();
}
/// Inspiration:
/// http://reactivex.io/documentation/operators/debounce.html
/// https://stackoverflow.com/questions/20034476/how-can-i-use-reactive-extensions-to-throttle-events-using-a-max-window-size
public static IObservable<T> Debounce<T>(this IObservable<T> source, TimeSpan interval, IScheduler? scheduler = null)
{
scheduler ??= Scheduler.Default;
return Observable.Create<T>(o =>
{
var hasValue = false;
bool throttling = false;
T value = default;
var dueTimeDisposable = new SerialDisposable();
void internalCallback()
{
if (hasValue)
{
// We have another value that came in to fire.
// Reregister for callback
dueTimeDisposable.Disposable = scheduler.Schedule(interval, internalCallback);
o.OnNext(value);
value = default;
hasValue = false;
}
else
{
// Nothing to do, throttle is complete.
throttling = false;
}
}
return source.Subscribe(
onNext: (x) =>
{
if (!throttling)
{
// Fire initial value
o.OnNext(x);
// Mark that we're throttling
throttling = true;
// Register for callback when throttle is complete
dueTimeDisposable.Disposable = scheduler.Schedule(interval, internalCallback);
}
else
{
// In the middle of throttle
// Save value and return
hasValue = true;
value = x;
}
},
onError: o.OnError,
onCompleted: o.OnCompleted);
});
}
public static IObservable<Unit> SelectTask<T>(this IObservable<T> source, Func<T, Task> task)
{
return source
.SelectMany(async i =>
{
await task(i).ConfigureAwait(false);
return System.Reactive.Unit.Default;
});
}
public static IObservable<Unit> SelectTask<T>(this IObservable<T> source, Func<Task> task)
{
return source
.SelectMany(async _ =>
{
await task().ConfigureAwait(false);
return System.Reactive.Unit.Default;
});
}
public static IObservable<R> SelectTask<T, R>(this IObservable<T> source, Func<Task<R>> task)
{
return source
.SelectMany(_ => task());
}
public static IObservable<R> SelectTask<T, R>(this IObservable<T> source, Func<T, Task<R>> task)
{
return source
.SelectMany(x => task(x));
}
public static IObservable<T> DoTask<T>(this IObservable<T> source, Func<T, Task> task)
{
return source
.SelectMany(async (x) =>
{
await task(x).ConfigureAwait(false);
return x;
});
}
public static IObservable<R> WhereCastable<T, R>(this IObservable<T> source)
where R : class
where T : class
{
return source
.Select(x => x as R)
.NotNull();
}
public static IObservable<bool> Invert(this IObservable<bool> source)
{
return source.Select(x => !x);
}
public static IObservable<(T Previous, T Current)> Pairwise<T>(this IObservable<T> source)
{
T prevStorage = default;
return source.Select(i =>
{
var prev = prevStorage;
prevStorage = i;
return (prev, i);
});
}
public static IObservable<T> DelayInitial<T>(this IObservable<T> source, TimeSpan delay, IScheduler scheduler)
{
return source.FlowSwitch(
Observable.Return(System.Reactive.Unit.Default)
.Delay(delay, scheduler)
.Select(_ => true)
.StartWith(false));
}
public static IObservable<T?> DisposeOld<T>(this IObservable<T?> source)
where T : class, IDisposable
{
return source
.StartWith(default(T))
.Pairwise()
.Do(x =>
{
if (x.Previous != null)
{
x.Previous.Dispose();
}
})
.Select(x => x.Current);
}
}
}