ACE3/extensions/common/simulation/object.cpp

454 lines
16 KiB
C++
Raw Normal View History

#include "object.hpp"
#include "p3d\parser.hpp"
#include "glm\gtc\matrix_transform.hpp"
ace::simulation::vertex::vertex(vertex_table & _table, ace::vector3<float> _vertex, uint32_t _id) : table(_table), vertex_id(_id)
{
2015-05-12 05:33:39 +00:00
this->original_vertex = _vertex;
this->animated_vertex = _vertex;
}
ace::simulation::vertex::~vertex()
{
}
ace::simulation::face::face(
2015-05-12 05:33:39 +00:00
const ace::p3d::face_p p3d_face,
const ace::p3d::lod_p p3d_lod,
const ace::p3d::model_p p3d,
ace::simulation::lod *object_lod)
{
2015-05-12 05:33:39 +00:00
this->type = p3d_face->type;
for (uint16_t vertex_id : p3d_face->vertex_table) {
this->vertices.push_back(object_lod->vertices[vertex_id]);
object_lod->vertices[vertex_id]->faces.push_back(this);
}
}
ace::simulation::face::~face()
{
}
2015-05-12 05:33:39 +00:00
void ace::simulation::vertex::animate(const glm::mat4 &matrix, ace::vector3<float> rotation_offset, bool offset)
{
2015-05-12 05:33:39 +00:00
ace::vector3<float> temp_vector = this->original_vertex;
if (offset) {
temp_vector = temp_vector - rotation_offset;
}
glm::vec4 temp_gl_vector = glm::vec4(temp_vector.x(), temp_vector.y(), temp_vector.z(), 1.0f);
temp_gl_vector = matrix*temp_gl_vector;
this->animated_vertex = ace::vector3<float>(temp_gl_vector.x, temp_gl_vector.y, temp_gl_vector.z);
if (offset) {
// this->animated_vertex = this->animated_vertex + rotation_offset;
}
}
ace::simulation::named_selection::named_selection(
2015-05-12 05:33:39 +00:00
const ace::p3d::named_selection_p p3d_selection,
const ace::p3d::lod_p p3d_lod,
const ace::p3d::model_p p3d,
ace::simulation::lod *object_lod)
{
2015-05-12 05:33:39 +00:00
this->name = p3d_selection->name;
for (uint16_t vertex_id : p3d_selection->vertex_table.data) {
this->vertices.push_back(object_lod->vertices[vertex_id]);
object_lod->vertices[vertex_id]->selections.push_back(this);
}
for (uint16_t face_id : p3d_selection->faces.data) {
this->faces.push_back(object_lod->faces[face_id]);
}
}
ace::simulation::named_selection::~named_selection()
{
}
void ace::simulation::named_selection::animate(const glm::mat4 &matrix, ace::vector3<float> rotation_offset)
{
2015-05-12 05:33:39 +00:00
bool offset = !rotation_offset.zero_distance();
for (auto selection_vertex : this->vertices) {
selection_vertex->animate(matrix, rotation_offset, offset);
}
}
ace::simulation::vertex_table::vertex_table(const ace::p3d::vertex_table_p p3d_vertex_table, const ace::p3d::lod_p p3d_lod, const ace::p3d::model_p p3d) : animated(false)
{
2015-05-12 05:33:39 +00:00
this->vertices.resize(p3d_vertex_table->points.size);
for (uint32_t i = 0; i <= p3d_vertex_table->points.size - 1; ++i) {
if (p3d->info->autocenter) {
ace::vector3<float> new_vertex = ace::vector3<float>(
p3d_vertex_table->points[i].x() + (p3d_lod->autocenter_pos.x()*-1),
p3d_vertex_table->points[i].y() + (p3d_lod->autocenter_pos.y()*-1),
p3d_vertex_table->points[i].z() + (p3d_lod->autocenter_pos.z()*-1)
);
this->vertices[i] = std::make_shared<vertex>(*this, new_vertex, i);
}
else {
this->vertices[i] = std::make_shared<vertex>(*this, p3d_vertex_table->points[i], i);
}
}
}
ace::simulation::vertex_table::~vertex_table()
{
}
ace::simulation::lod::lod(const ace::p3d::lod_p p3d_lod, const ace::p3d::model_p p3d)
{
2015-05-12 05:33:39 +00:00
this->id = p3d_lod->id;
this->vertices = vertex_table(p3d_lod->vertices, p3d_lod, p3d);
this->autocenter_pos = p3d_lod->autocenter_pos;
2015-05-12 05:33:39 +00:00
for (ace::p3d::face_p p3d_face : p3d_lod->faces) {
this->faces.push_back(std::make_shared<face>(p3d_face, p3d_lod, p3d, this));
}
2015-05-12 05:33:39 +00:00
for (ace::p3d::named_selection_p p3d_selection : p3d_lod->selections) {
this->selections[p3d_selection->name] = std::make_shared<named_selection>(p3d_selection, p3d_lod, p3d, this);
}
}
ace::simulation::lod::~lod()
{
}
ace::simulation::lod_animation_info::lod_animation_info(
2015-05-12 05:33:39 +00:00
animation *_animation,
lod_p _lod,
const ace::p3d::animate_bone_p p3d_animate_bone,
const ace::p3d::animation_p p3d_animation,
const ace::p3d::model_p p3d) : animation_definition(_animation), lod(_lod)
{
2015-05-12 05:33:39 +00:00
this->index = p3d_animate_bone->index;
if (p3d->info->autocenter) {
this->axis_position = p3d_animate_bone->axis_position + (lod->autocenter_pos*-1);
this->axis_direction = p3d_animate_bone->axis_direction.normalize();
}
else {
this->axis_position = p3d_animate_bone->axis_position;
this->axis_direction = p3d_animate_bone->axis_direction.normalize();
}
}
ace::simulation::lod_animation_info::~lod_animation_info()
{
}
ace::simulation::animation::animation(object *parent_object, const ace::p3d::animation_p p3d_animation, const ace::p3d::model_p p3d)
{
2015-05-12 05:33:39 +00:00
this->type = p3d_animation->type;
this->name = p3d_animation->name;
this->source = p3d_animation->source;
this->source_address = p3d_animation->source_address;
this->min_value = p3d_animation->min_value;
this->max_value = p3d_animation->max_value;
this->min_phase = p3d_animation->min_phase;
this->max_phase = p3d_animation->max_phase;
switch (type) {
// rotations
case 0:
case 1:
case 2:
case 3:
angle0 = p3d_animation->angle0;
angle1 = p3d_animation->angle1;
break;
// translations
case 4:
case 5:
case 6:
case 7:
offset0 = p3d_animation->offset0;
offset1 = p3d_animation->offset1;
break;
case 8:
direct_axis_pos = p3d_animation->direct_axis_pos;
direct_axis_dir = p3d_animation->direct_axis_dir;
direct_angle = p3d_animation->direct_angle;
direct_axis_offset = p3d_animation->direct_axis_offset;
break;
case 9:
hide_value = p3d_animation->hide_value;
default:
offset0 = 0.0f;
offset1 = 0.0f;
}
for (ace::p3d::animate_bone_p animation_bone : p3d_animation->bones) {
this->lod_info[animation_bone->lod] = std::make_shared<lod_animation_info>(this, parent_object->lods[animation_bone->lod], animation_bone, p3d_animation, p3d);
}
}
ace::simulation::animation::~animation()
{
}
typedef union {
2015-05-12 05:33:39 +00:00
float f;
struct {
uint32_t sh1 : 32;
} parts;
} double_cast;
#define RAD2DEG(rad) (rad * 180.0f / 3.1415926f);
typedef std::map<uint32_t, std::pair<glm::mat4, ace::vector3<float>>> animation_transform;
animation_transform ace::simulation::animation::animate(const float phase, const std::vector<uint32_t> &lods, animation_transform base_transforms)
{
2015-05-12 05:33:39 +00:00
animation_transform return_matrices;
for (auto lod_id : lods) {
glm::mat4 base_matrix = base_transforms[lod_id].first;
ace::vector3<float> base_rotation_offset = base_transforms[lod_id].second;
glm::mat4 animation_matrix, direction_matrix;
ace::vector3<float> rotation_offset = ace::vector3<float>(0, 0, 0);
float scale = get_scale(phase);
glm::vec3 axis_position = glm::vec3(this->lod_info[lod_id]->axis_position.x(), this->lod_info[lod_id]->axis_position.y(), this->lod_info[lod_id]->axis_position.z());
glm::vec3 axis_direction = glm::vec3(this->lod_info[lod_id]->axis_direction.x(), this->lod_info[lod_id]->axis_direction.y(), this->lod_info[lod_id]->axis_direction.z());
if (true) {
switch (this->type) {
//rotation
case 0: {
scale = (scale / (max_value - min_value)) * (angle1 - angle0);
animation_matrix = glm::rotate(glm::mat4(1.0f), scale, axis_direction);
direction_matrix = glm::translate(glm::mat4(1.0f), axis_position);
animation_matrix = animation_matrix * direction_matrix;
rotation_offset = this->lod_info[lod_id]->axis_position;
break;
}
//rotationX
case 1: {
scale = (scale / (max_value - min_value)) * (angle1 - angle0);
glm::vec3 rotation_axis = glm::vec3(1.0f, 0.0f, 0.0f);
animation_matrix = glm::rotate(glm::mat4(1.0f), scale, rotation_axis);
direction_matrix = glm::translate(glm::mat4(1.0f), axis_position);
animation_matrix = animation_matrix * direction_matrix;
rotation_offset = this->lod_info[lod_id]->axis_position;
break;
}
//rotationY
case 2: {
scale = (scale / (max_value - min_value)) * (angle1 - angle0);
glm::vec3 rotation_axis = glm::vec3(0.0f, 1.0f, 0.0f);
animation_matrix = glm::rotate(glm::mat4(1.0f), scale, rotation_axis);
direction_matrix = glm::translate(glm::mat4(1.0f), axis_position);
animation_matrix = animation_matrix * direction_matrix;
rotation_offset = this->lod_info[lod_id]->axis_position;
break;
}
//rotationZ
case 3: {
scale = (scale / (max_value - min_value)) * (angle1 - angle0);
glm::vec3 rotation_axis = glm::vec3(0.0f, 0.0f, 1.0f);
animation_matrix = glm::rotate(glm::mat4(1.0f), scale, rotation_axis);
direction_matrix = glm::translate(glm::mat4(1.0f), axis_position);
animation_matrix = animation_matrix * direction_matrix;
rotation_offset = this->lod_info[lod_id]->axis_position;
break;
}
//translation
case 4: {
scale = (scale / (max_value - min_value)) * (offset1 - offset0);
animation_matrix = glm::translate(glm::mat4(1.0f), glm::vec3(
this->lod_info[lod_id]->axis_direction.x()*scale,
this->lod_info[lod_id]->axis_direction.y()*scale,
this->lod_info[lod_id]->axis_direction.z()*scale
));
break;
}
//translationX
case 5: {
scale = (scale / (max_value - min_value)) * (offset1 - offset0);
animation_matrix = glm::translate(animation_matrix, glm::vec3(
scale,
0.0f,
0.0f
));
break;
}
//translationY
case 6: {
scale = (scale / (max_value - min_value)) * (offset1 - offset0);
animation_matrix = glm::translate(animation_matrix, glm::vec3(
0.0f,
scale,
0.0f
));
break;
}
//translationZ
case 7: {
scale = (scale / (max_value - min_value)) * (offset1 - offset0);
animation_matrix = glm::translate(animation_matrix, glm::vec3(
0.0f,
0.0f,
scale
));
break;
}
case 8: {
// fuck direct for now
}
//hide
case 9: {
if (phase >= hide_value)
animation_matrix = glm::mat4x4(0.0f);
break;
}
default: {}
}
return_matrices[lod_id].first = animation_matrix * base_matrix;
return_matrices[lod_id].second = base_rotation_offset + rotation_offset;
}
}
return return_matrices;
}
float ace::simulation::animation::get_scale(float phase)
{
2015-05-12 05:33:39 +00:00
float scale = 0;
switch (source_address)
{
case 1:
scale = fmod(phase - min_value, max_value - min_value) + min_value;
scale = std::min(std::max(scale, min_phase), max_phase);
break;
case 2:
scale = fmod(phase - min_value, (max_value - min_value) * 2) + min_value;
if (scale > max_value) scale = max_value - (scale - max_value);
scale = std::min(std::max(scale, min_phase), max_phase);
break;
default:
scale = std::min(std::max(phase, min_phase), max_phase);
}
return scale;
}
ace::simulation::bone::bone(
2015-05-12 05:33:39 +00:00
const std::string _name,
const std::vector<std::string> &children,
const std::map<std::string, ace::p3d::bone_p> &p3d_bones,
bone *_parent,
const ace::p3d::model_p p3d,
object * sim_object
) : parent(_parent), name(_name), base_object(sim_object)
{
2015-05-12 05:33:39 +00:00
for (auto const child_bone : children) {
if (sim_object->all_bones.find(child_bone) == sim_object->all_bones.end()) {
ace::p3d::bone_p p3d_bone = p3d_bones.find(child_bone)->second;
sim_object->all_bones[child_bone] = std::make_shared<bone>(p3d_bone->name, p3d_bone->children, p3d_bones, this, p3d, sim_object);
}
this->children.push_back(sim_object->all_bones[child_bone]);
}
if (parent) {
for (auto p3d_animation : p3d_bones.find(name)->second->animations) {
this->animations.push_back(sim_object->animations[p3d_animation]);
}
}
}
void ace::simulation::bone::animate(const std::map<std::string, float> &animation_state, const std::vector<uint32_t> &lods, animation_transform base_transforms)
{
2015-05-12 05:33:39 +00:00
if (animations.size() > 0) {
for (auto bone_animation : animations) {
if (animation_state.find(bone_animation->name) != animation_state.end()) {
base_transforms = bone_animation->animate(animation_state.find(bone_animation->name)->second, lods, base_transforms);
}
}
}
for (auto child_bone : children) {
child_bone->animate(animation_state, lods, base_transforms);
}
if (animations.size() > 0) {
for (auto bone_animation : animations) {
for (auto lod_id : lods) {
auto selection = this->base_object->lods[lod_id]->selections.find(this->name);
if (selection != this->base_object->lods[lod_id]->selections.end()) {
selection->second->animate(base_transforms[lod_id].first, base_transforms[lod_id].second);
}
}
}
}
}
ace::simulation::object::object()
{
}
ace::simulation::object::object(const ace::p3d::model_p model)
{
2015-05-12 05:33:39 +00:00
for (ace::p3d::lod_p p3d_lod : model->lods) {
lod_p new_lod = std::make_shared<lod>(p3d_lod, model);
this->lods.push_back(new_lod);
this->lods[p3d_lod->id]->type = model->info->resolutions[p3d_lod->id];
2015-05-12 05:33:39 +00:00
}
2015-05-12 05:33:39 +00:00
for (ace::p3d::animation_p p3d_animation : model->animations) {
this->animations.push_back(std::make_shared<animation>(this, p3d_animation, model));
}
2015-05-12 05:33:39 +00:00
std::map<std::string, ace::p3d::bone_p> p3d_bones;
for (auto const skeleton_bone : model->skeleton->all_bones) {
p3d_bones[skeleton_bone->name] = skeleton_bone;
}
2015-05-12 05:33:39 +00:00
std::vector<std::string> root_bones;
for (auto const root_bone : model->skeleton->root_bones) {
root_bones.push_back(root_bone.first);
}
2015-05-12 05:33:39 +00:00
this->root_bone = std::make_shared<bone>("", root_bones, p3d_bones, nullptr, model, this);
}
ace::simulation::object::~object()
{
}
void ace::simulation::object::animate(const std::map<std::string, float> &animation_state, const std::vector<uint32_t> &selected_lods)
{
2015-05-12 05:33:39 +00:00
animation_transform identity_transform;
for (uint32_t lod_id : selected_lods) {
identity_transform[lod_id].first = glm::mat4();
identity_transform[lod_id].second = ace::vector3<float>(0, 0, 0);
}
this->root_bone->animate(animation_state, selected_lods, identity_transform);
}