cc-mek-scada/supervisor/session/facility.lua

811 lines
30 KiB
Lua

local log = require("scada-common.log")
local rsio = require("scada-common.rsio")
local types = require("scada-common.types")
local util = require("scada-common.util")
local rsctl = require("supervisor.session.rsctl")
local unit = require("supervisor.session.unit")
local PROCESS = types.PROCESS
local PROCESS_NAMES = types.PROCESS_NAMES
-- 7.14 kJ per blade for 1 mB of fissile fuel<br/>
-- 2856 FE per blade per 1 mB, 285.6 FE per blade per 0.1 mB (minimum)
local POWER_PER_BLADE = util.joules_to_fe(7140)
local FLOW_STABILITY_DELAY_S = unit.FLOW_STABILITY_DELAY_MS / 1000
local HIGH_CHARGE = 1.0
local RE_ENABLE_CHARGE = 0.95
local AUTO_SCRAM = {
NONE = 0,
MATRIX_DC = 1,
MATRIX_FILL = 2,
CRIT_ALARM = 3,
GEN_FAULT = 4
}
local START_STATUS = {
OK = 0,
NO_UNITS = 1,
BLADE_MISMATCH = 2
}
local charge_Kp = 0.275
local charge_Ki = 0.0
local charge_Kd = 4.5
local rate_Kp = 2.45
local rate_Ki = 0.4825
local rate_Kd = -1.0
---@class facility_management
local facility = {}
-- create a new facility management object
---@param num_reactors integer number of reactor units
---@param cooling_conf table cooling configurations of reactor units
function facility.new(num_reactors, cooling_conf)
local self = {
units = {},
induction = {},
redstone = {},
status_text = { "START UP", "initializing..." },
all_sys_ok = false,
-- process control
units_ready = false,
mode = PROCESS.INACTIVE,
last_mode = PROCESS.INACTIVE,
return_mode = PROCESS.INACTIVE,
mode_set = PROCESS.MAX_BURN,
start_fail = START_STATUS.OK,
max_burn_combined = 0.0, -- maximum burn rate to clamp at
burn_target = 0.1, -- burn rate target for aggregate burn mode
charge_setpoint = 0, -- FE charge target setpoint
gen_rate_setpoint = 0, -- FE/t charge rate target setpoint
group_map = { 0, 0, 0, 0 }, -- units -> group IDs
prio_defs = { {}, {}, {}, {} }, -- priority definitions (each level is a table of units)
at_max_burn = false,
ascram = false,
ascram_reason = AUTO_SCRAM.NONE,
-- closed loop control
charge_conversion = 1.0,
time_start = 0.0,
initial_ramp = true,
waiting_on_ramp = false,
waiting_on_stable = false,
accumulator = 0.0,
saturated = false,
last_update = 0,
last_error = 0.0,
last_time = 0.0,
-- statistics
im_stat_init = false,
avg_charge = util.mov_avg(3, 0.0),
avg_inflow = util.mov_avg(6, 0.0),
avg_outflow = util.mov_avg(6, 0.0)
}
-- create units
for i = 1, num_reactors do
table.insert(self.units, unit.new(i, cooling_conf[i].BOILERS, cooling_conf[i].TURBINES))
end
-- init redstone RTU I/O controller
local rs_rtu_io_ctl = rsctl.new(self.redstone)
-- unlink disconnected units
---@param sessions table
local function _unlink_disconnected_units(sessions)
util.filter_table(sessions, function (u) return u.is_connected() end)
end
-- check if all auto-controlled units completed ramping
local function _all_units_ramped()
local all_ramped = true
for i = 1, #self.prio_defs do
local units = self.prio_defs[i]
for u = 1, #units do
all_ramped = all_ramped and units[u].a_ramp_complete()
end
end
return all_ramped
end
-- split a burn rate among the reactors
---@param burn_rate number burn rate assignment
---@param ramp boolean true to ramp, false to set right away
---@param abort_on_fault boolean? true to exit if one device has an effective burn rate different than its limit
---@return integer unallocated_br100, boolean? aborted
local function _allocate_burn_rate(burn_rate, ramp, abort_on_fault)
local unallocated = math.floor(burn_rate * 100)
-- go through all priority groups
for i = 1, #self.prio_defs do
local units = self.prio_defs[i]
if #units > 0 then
local split = math.floor(unallocated / #units)
local splits = {}
for u = 1, #units do splits[u] = split end
splits[#units] = splits[#units] + (unallocated % #units)
-- go through all reactor units in this group
for id = 1, #units do
local u = units[id] ---@type reactor_unit
local ctl = u.get_control_inf()
local lim_br100 = u.a_get_effective_limit()
if abort_on_fault and (lim_br100 ~= ctl.lim_br100) then
-- effective limit differs from set limit, unit is degraded
return unallocated, true
end
local last = ctl.br100
if splits[id] <= lim_br100 then
ctl.br100 = splits[id]
else
ctl.br100 = lim_br100
if id < #units then
local remaining = #units - id
split = math.floor(unallocated / remaining)
for x = (id + 1), #units do splits[x] = split end
splits[#units] = splits[#units] + (unallocated % remaining)
end
end
unallocated = math.max(0, unallocated - ctl.br100)
if last ~= ctl.br100 then
log.debug("unit " .. u.get_id() .. ": set to " .. ctl.br100 .. " (was " .. last .. ")")
u.a_commit_br100(ramp)
end
end
end
end
return unallocated, false
end
-- PUBLIC FUNCTIONS --
---@class facility
local public = {}
-- ADD/LINK DEVICES --
-- link a redstone RTU session
---@param rs_unit unit_session
function public.add_redstone(rs_unit)
table.insert(self.redstone, rs_unit)
end
-- link an imatrix RTU session
---@param imatrix unit_session
function public.add_imatrix(imatrix)
table.insert(self.induction, imatrix)
end
-- purge devices associated with the given RTU session ID
---@param session integer RTU session ID
function public.purge_rtu_devices(session)
util.filter_table(self.redstone, function (s) return s.get_session_id() ~= session end)
util.filter_table(self.induction, function (s) return s.get_session_id() ~= session end)
end
-- UPDATE --
-- update (iterate) the facility management
function public.update()
-- unlink RTU unit sessions if they are closed
_unlink_disconnected_units(self.induction)
_unlink_disconnected_units(self.redstone)
-- current state for process control
local charge_update = 0
local rate_update = 0
-- calculate moving averages for induction matrix
if self.induction[1] ~= nil then
local matrix = self.induction[1] ---@type unit_session
local db = matrix.get_db() ---@type imatrix_session_db
charge_update = db.tanks.last_update
rate_update = db.state.last_update
if (charge_update > 0) and (rate_update > 0) then
if self.im_stat_init then
self.avg_charge.record(util.joules_to_fe(db.tanks.energy), charge_update)
self.avg_inflow.record(util.joules_to_fe(db.state.last_input), rate_update)
self.avg_outflow.record(util.joules_to_fe(db.state.last_output), rate_update)
else
self.im_stat_init = true
self.avg_charge.reset(util.joules_to_fe(db.tanks.energy))
self.avg_inflow.reset(util.joules_to_fe(db.state.last_input))
self.avg_outflow.reset(util.joules_to_fe(db.state.last_output))
end
end
else
self.im_stat_init = false
end
self.all_sys_ok = true
for i = 1, #self.units do
self.all_sys_ok = self.all_sys_ok and not self.units[i].get_control_inf().degraded
end
-------------------------
-- Run Process Control --
-------------------------
local avg_charge = self.avg_charge.compute()
local avg_inflow = self.avg_inflow.compute()
local now = util.time_s()
local state_changed = self.mode ~= self.last_mode
local next_mode = self.mode
-- once auto control is started, sort the priority sublists by limits
if state_changed then
self.saturated = false
log.debug("FAC: state changed from " .. PROCESS_NAMES[self.last_mode + 1] .. " to " .. PROCESS_NAMES[self.mode + 1])
if (self.last_mode == PROCESS.INACTIVE) or (self.last_mode == PROCESS.GEN_RATE_FAULT_IDLE) then
self.start_fail = START_STATUS.OK
if (self.mode ~= PROCESS.MATRIX_FAULT_IDLE) and (self.mode ~= PROCESS.UNIT_ALARM_IDLE) then
-- auto clear ASCRAM
self.ascram = false
end
local blade_count = nil
self.max_burn_combined = 0.0
for i = 1, #self.prio_defs do
table.sort(self.prio_defs[i],
---@param a reactor_unit
---@param b reactor_unit
function (a, b) return a.get_control_inf().lim_br100 < b.get_control_inf().lim_br100 end
)
for _, u in pairs(self.prio_defs[i]) do
local u_blade_count = u.get_control_inf().blade_count
if blade_count == nil then
blade_count = u_blade_count
elseif (u_blade_count ~= blade_count) and (self.mode == PROCESS.GEN_RATE) then
log.warning("FAC: cannot start GEN_RATE process with inconsistent unit blade counts")
next_mode = PROCESS.INACTIVE
self.start_fail = START_STATUS.BLADE_MISMATCH
end
if self.start_fail == START_STATUS.OK then u.a_engage() end
self.max_burn_combined = self.max_burn_combined + (u.get_control_inf().lim_br100 / 100.0)
end
end
if blade_count == nil then
-- no units
log.warning("FAC: cannot start process control with 0 units assigned")
next_mode = PROCESS.INACTIVE
self.start_fail = START_STATUS.NO_UNITS
else
self.charge_conversion = blade_count * POWER_PER_BLADE
end
elseif self.mode == PROCESS.INACTIVE then
for i = 1, #self.prio_defs do
-- SCRAM reactors and disengage auto control
-- use manual SCRAM since inactive was requested, and automatic SCRAM trips an alarm
for _, u in pairs(self.prio_defs[i]) do
u.scram()
u.a_disengage()
end
end
log.info("FAC: disengaging auto control (now inactive)")
end
self.initial_ramp = true
self.waiting_on_ramp = false
self.waiting_on_stable = false
else
self.initial_ramp = false
end
-- update unit ready state
local assign_count = 0
self.units_ready = true
for i = 1, #self.prio_defs do
for _, u in pairs(self.prio_defs[i]) do
assign_count = assign_count + 1
self.units_ready = self.units_ready and u.get_control_inf().ready
end
end
-- perform mode-specific operations
if self.mode == PROCESS.INACTIVE then
if not self.units_ready then
self.status_text = { "NOT READY", "assigned units not ready" }
elseif self.start_fail == START_STATUS.NO_UNITS and assign_count == 0 then
self.status_text = { "START FAILED", "no units were assigned" }
elseif self.start_fail == START_STATUS.BLADE_MISMATCH then
self.status_text = { "START FAILED", "turbine blade count mismatch" }
else
self.status_text = { "IDLE", "control disengaged" }
end
elseif self.mode == PROCESS.MAX_BURN then
-- run units at their limits
if state_changed then
self.time_start = now
self.saturated = true
self.status_text = { "MONITORED MODE", "running reactors at limit" }
log.info(util.c("FAC: MAX_BURN process mode started"))
end
_allocate_burn_rate(self.max_burn_combined, true)
elseif self.mode == PROCESS.BURN_RATE then
-- a total aggregate burn rate
if state_changed then
self.time_start = now
self.status_text = { "BURN RATE MODE", "running" }
log.info(util.c("FAC: BURN_RATE process mode started"))
end
local unallocated = _allocate_burn_rate(self.burn_target, true)
self.saturated = self.burn_target == self.max_burn_combined or unallocated > 0
elseif self.mode == PROCESS.CHARGE then
-- target a level of charge
if state_changed then
self.time_start = now
self.last_time = now
self.last_error = 0
self.accumulator = 0
self.status_text = { "CHARGE MODE", "running control loop" }
log.info(util.c("FAC: CHARGE mode starting PID control"))
elseif self.last_update ~= charge_update then
-- convert to kFE to make constants not microscopic
local error = util.round((self.charge_setpoint - avg_charge) / 1000) / 1000
-- stop accumulator when saturated to avoid windup
if not self.saturated then
self.accumulator = self.accumulator + (error * (now - self.last_time))
end
local runtime = now - self.time_start
local integral = self.accumulator
local derivative = (error - self.last_error) / (now - self.last_time)
local P = (charge_Kp * error)
local I = (charge_Ki * integral)
local D = (charge_Kd * derivative)
local output = P + I + D
-- clamp at range -> output clamped (out_c)
local out_c = math.max(0, math.min(output, self.max_burn_combined))
self.saturated = output ~= out_c
log.debug(util.sprintf("CHARGE[%f] { CHRG[%f] ERR[%f] INT[%f] => OUT[%f] OUT_C[%f] <= P[%f] I[%f] D[%d] }",
runtime, avg_charge, error, integral, output, out_c, P, I, D))
_allocate_burn_rate(out_c, true)
self.last_time = now
self.last_error = error
end
self.last_update = charge_update
elseif self.mode == PROCESS.GEN_RATE then
-- target a rate of generation
if state_changed then
-- estimate an initial output
local output = self.gen_rate_setpoint / self.charge_conversion
local unallocated = _allocate_burn_rate(output, true)
self.saturated = output >= self.max_burn_combined or unallocated > 0
self.waiting_on_ramp = true
self.status_text = { "GENERATION MODE", "starting up" }
log.info(util.c("FAC: GEN_RATE process mode initial ramp started (initial target is ", output, " mB/t)"))
elseif self.waiting_on_ramp then
if _all_units_ramped() then
self.waiting_on_ramp = false
self.waiting_on_stable = true
self.time_start = now
self.status_text = { "GENERATION MODE", "holding ramped rate" }
log.info("FAC: GEN_RATE process mode initial ramp completed, holding for stablization time")
end
elseif self.waiting_on_stable then
if (now - self.time_start) > FLOW_STABILITY_DELAY_S then
self.waiting_on_stable = false
self.time_start = now
self.last_time = now
self.last_error = 0
self.accumulator = 0
self.status_text = { "GENERATION MODE", "running control loop" }
log.info("FAC: GEN_RATE process mode initial hold completed, starting PID control")
end
elseif self.last_update ~= rate_update then
-- convert to MFE (in rounded kFE) to make constants not microscopic
local error = util.round((self.gen_rate_setpoint - avg_inflow) / 1000) / 1000
-- stop accumulator when saturated to avoid windup
if not self.saturated then
self.accumulator = self.accumulator + (error * (now - self.last_time))
end
local runtime = now - self.time_start
local integral = self.accumulator
local derivative = (error - self.last_error) / (now - self.last_time)
local P = (rate_Kp * error)
local I = (rate_Ki * integral)
local D = (rate_Kd * derivative)
-- velocity (rate) (derivative of charge level => rate) feed forward
local FF = self.gen_rate_setpoint / self.charge_conversion
local output = P + I + D + FF
-- clamp at range -> output clamped (sp_c)
local out_c = math.max(0, math.min(output, self.max_burn_combined))
self.saturated = output ~= out_c
log.debug(util.sprintf("GEN_RATE[%f] { RATE[%f] ERR[%f] INT[%f] => OUT[%f] OUT_C[%f] <= P[%f] I[%f] D[%f] }",
runtime, avg_inflow, error, integral, output, out_c, P, I, D))
local _, fault = _allocate_burn_rate(out_c, false)
if fault then
log.info("FAC: one or more units degraded, pausing GEN_RATE process control")
next_mode = PROCESS.GEN_RATE_FAULT_IDLE
end
self.last_time = now
self.last_error = error
end
self.last_update = rate_update
elseif self.mode == PROCESS.MATRIX_FAULT_IDLE then
-- exceeded charge, wait until condition clears
if self.ascram_reason == AUTO_SCRAM.NONE then
next_mode = self.return_mode
log.info("FAC: exiting matrix fault idle state due to fault resolution")
elseif self.ascram_reason == AUTO_SCRAM.CRIT_ALARM then
next_mode = PROCESS.INACTIVE
log.info("FAC: exiting matrix fault idle state due to critical unit alarm")
end
elseif self.mode == PROCESS.UNIT_ALARM_IDLE then
-- do nothing, wait for user to confirm (stop and reset)
elseif self.mode == PROCESS.GEN_RATE_FAULT_IDLE then
-- system faulted (degraded/not ready) while running generation rate mode
-- mode will need to be fully restarted once everything is OK to re-ramp to feed-forward
if self.units_ready then
log.info("FAC: system ready after faulting out of GEN_RATE process mode, switching back...")
next_mode = PROCESS.GEN_RATE
end
elseif self.mode ~= PROCESS.INACTIVE then
log.error(util.c("FAC: unsupported process mode ", self.mode, ", switching to inactive"))
next_mode = PROCESS.INACTIVE
end
------------------------------
-- Evaluate Automatic SCRAM --
------------------------------
if (self.mode ~= PROCESS.INACTIVE) and (self.mode ~= PROCESS.UNIT_ALARM_IDLE) then
local scram = false
if self.units_ready and self.ascram_reason == AUTO_SCRAM.GEN_FAULT then
self.ascram_reason = AUTO_SCRAM.NONE
end
if self.induction[1] ~= nil then
local matrix = self.induction[1] ---@type unit_session
local db = matrix.get_db() ---@type imatrix_session_db
if self.ascram_reason == AUTO_SCRAM.MATRIX_DC then
self.ascram_reason = AUTO_SCRAM.NONE
log.info("FAC: cleared automatic SCRAM trip due to prior induction matrix disconnect")
end
if (db.tanks.energy_fill >= HIGH_CHARGE) or
(self.ascram_reason == AUTO_SCRAM.MATRIX_FILL and db.tanks.energy_fill > RE_ENABLE_CHARGE) then
scram = true
if self.mode ~= PROCESS.MATRIX_FAULT_IDLE then
self.return_mode = self.mode
next_mode = PROCESS.MATRIX_FAULT_IDLE
end
if self.ascram_reason == AUTO_SCRAM.NONE then
self.ascram_reason = AUTO_SCRAM.MATRIX_FILL
end
elseif self.ascram_reason == AUTO_SCRAM.MATRIX_FILL then
log.info("FAC: charge state of induction matrix entered acceptable range <= " .. (RE_ENABLE_CHARGE * 100) .. "%")
self.ascram_reason = AUTO_SCRAM.NONE
end
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
if u.has_critical_alarm() then
scram = true
if self.ascram_reason == AUTO_SCRAM.NONE then
self.ascram_reason = AUTO_SCRAM.CRIT_ALARM
end
next_mode = PROCESS.UNIT_ALARM_IDLE
log.info("FAC: emergency exit of process control due to critical unit alarm")
break
end
end
if (self.mode == PROCESS.GEN_RATE) and (not self.units_ready) then
-- system not ready, will need to restart GEN_RATE mode
scram = true
if self.ascram_reason == AUTO_SCRAM.NONE then
self.ascram_reason = AUTO_SCRAM.GEN_FAULT
end
next_mode = PROCESS.GEN_RATE_FAULT_IDLE
end
else
scram = true
if self.mode ~= PROCESS.MATRIX_FAULT_IDLE then
self.return_mode = self.mode
next_mode = PROCESS.MATRIX_FAULT_IDLE
end
if self.ascram_reason == AUTO_SCRAM.NONE then
self.ascram_reason = AUTO_SCRAM.MATRIX_DC
end
end
-- SCRAM all units
if (not self.ascram) and scram then
for i = 1, #self.prio_defs do
for _, u in pairs(self.prio_defs[i]) do
u.a_scram()
end
end
if self.ascram_reason == AUTO_SCRAM.MATRIX_DC then
log.info("FAC: automatic SCRAM due to induction matrix disconnection")
self.status_text = { "AUTOMATIC SCRAM", "induction matrix disconnected" }
elseif self.ascram_reason == AUTO_SCRAM.MATRIX_FILL then
log.info("FAC: automatic SCRAM due to induction matrix high charge")
self.status_text = { "AUTOMATIC SCRAM", "induction matrix fill high" }
elseif self.ascram_reason == AUTO_SCRAM.CRIT_ALARM then
log.info("FAC: automatic SCRAM due to critical unit alarm")
self.status_text = { "AUTOMATIC SCRAM", "critical unit alarm tripped" }
elseif self.ascram_reason == AUTO_SCRAM.GEN_FAULT then
log.info("FAC: automatic SCRAM due to unit problem while in GEN_RATE mode, will resume once all units are ready")
self.status_text = { "GENERATION MODE IDLE", "paused: system not ready" }
else
log.error(util.c("FAC: automatic SCRAM reason (", self.ascram_reason, ") not set to a known value"))
end
end
self.ascram = scram
-- clear PLC SCRAM if we should
if not self.ascram then
self.ascram_reason = AUTO_SCRAM.NONE
-- do not reset while in gen rate, we have to exit this mode first
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
u.a_cond_rps_reset()
end
end
end
-- update last mode and set next mode
self.last_mode = self.mode
self.mode = next_mode
end
-- call the update function of all units in the facility
function public.update_units()
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
u.update()
end
end
-- COMMANDS --
-- SCRAM all reactor units
function public.scram_all()
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
u.scram()
end
end
-- ack all alarms on all reactor units
function public.ack_all()
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
u.ack_all()
end
end
-- stop auto control
function public.auto_stop()
self.mode = PROCESS.INACTIVE
end
-- set automatic control configuration and start the process
---@param config coord_auto_config configuration
---@return table response ready state (successfully started) and current configuration (after updating)
function public.auto_start(config)
local ready = false
-- load up current limits
local limits = {}
for i = 1, num_reactors do
local u = self.units[i] ---@type reactor_unit
limits[i] = u.get_control_inf().lim_br100 * 100
end
-- only allow changes if not running
if self.mode == PROCESS.INACTIVE then
if (type(config.mode) == "number") and (config.mode > PROCESS.INACTIVE) and (config.mode <= PROCESS.GEN_RATE) then
self.mode_set = config.mode
end
if (type(config.burn_target) == "number") and config.burn_target >= 0.1 then
self.burn_target = config.burn_target
end
if (type(config.charge_target) == "number") and config.charge_target >= 0 then
self.charge_setpoint = config.charge_target * 1000000 -- convert MFE to FE
end
if (type(config.gen_target) == "number") and config.gen_target >= 0 then
self.gen_rate_setpoint = config.gen_target * 1000 -- convert kFE to FE
end
if (type(config.limits) == "table") and (#config.limits == num_reactors) then
for i = 1, num_reactors do
local limit = config.limits[i]
if (type(limit) == "number") and (limit >= 0.1) then
limits[i] = limit
self.units[i].set_burn_limit(limit)
end
end
end
ready = self.mode_set > 0
if (self.mode_set == PROCESS.CHARGE) and (self.charge_setpoint <= 0) then
ready = false
elseif (self.mode_set == PROCESS.GEN_RATE) and (self.gen_rate_setpoint <= 0) then
ready = false
elseif (self.mode_set == PROCESS.BURN_RATE) and (self.burn_target < 0.1) then
ready = false
end
ready = ready and self.units_ready
if ready then self.mode = self.mode_set end
end
return { ready, self.mode_set, self.burn_target, self.charge_setpoint, self.gen_rate_setpoint, limits }
end
-- SETTINGS --
-- set the automatic control group of a unit
---@param unit_id integer unit ID
---@param group integer group ID or 0 for independent
function public.set_group(unit_id, group)
if group >= 0 and group <= 4 and self.mode == PROCESS.INACTIVE then
-- remove from old group if previously assigned
local old_group = self.group_map[unit_id]
if old_group ~= 0 then
util.filter_table(self.prio_defs[old_group], function (u) return u.get_id() ~= unit_id end)
end
self.group_map[unit_id] = group
-- add to group if not independent
if group > 0 then
table.insert(self.prio_defs[group], self.units[unit_id])
end
end
end
-- READ STATES/PROPERTIES --
-- get build properties of all machines
function public.get_build()
local build = {}
build.induction = {}
for i = 1, #self.induction do
local matrix = self.induction[i] ---@type unit_session
build.induction[matrix.get_device_idx()] = { matrix.get_db().formed, matrix.get_db().build }
end
return build
end
-- get automatic process control status
function public.get_control_status()
return {
self.all_sys_ok,
self.units_ready,
self.mode,
self.waiting_on_ramp or self.waiting_on_stable,
self.at_max_burn or self.saturated,
self.ascram,
self.status_text[1],
self.status_text[2],
self.group_map
}
end
-- get RTU statuses
function public.get_rtu_statuses()
local status = {}
-- power averages from induction matricies
status.power = {
self.avg_charge.compute(),
self.avg_inflow.compute(),
self.avg_outflow.compute()
}
-- status of induction matricies (including tanks)
status.induction = {}
for i = 1, #self.induction do
local matrix = self.induction[i] ---@type unit_session
status.induction[matrix.get_device_idx()] = {
matrix.is_faulted(),
matrix.get_db().formed,
matrix.get_db().state,
matrix.get_db().tanks
}
end
---@todo other RTU statuses
return status
end
function public.get_units()
return self.units
end
return public
end
return facility