InvokeAI/invokeai/backend/tiles/utils.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

153 lines
5.5 KiB
Python
Raw Permalink Normal View History

import math
from typing import Optional
import cv2
import numpy as np
from pydantic import BaseModel, Field
class TBLR(BaseModel):
top: int
bottom: int
left: int
right: int
def __eq__(self, other):
return (
self.top == other.top
and self.bottom == other.bottom
and self.left == other.left
and self.right == other.right
)
class Tile(BaseModel):
coords: TBLR = Field(description="The coordinates of this tile relative to its parent image.")
overlap: TBLR = Field(description="The amount of overlap with adjacent tiles on each side of this tile.")
def __eq__(self, other):
return self.coords == other.coords and self.overlap == other.overlap
def paste(dst_image: np.ndarray, src_image: np.ndarray, box: TBLR, mask: Optional[np.ndarray] = None):
"""Paste a source image into a destination image.
Args:
dst_image (np.array): The destination image to paste into. Shape: (H, W, C).
src_image (np.array): The source image to paste. Shape: (H, W, C). H and W must be compatible with 'box'.
box (TBLR): Box defining the region in the 'dst_image' where 'src_image' will be pasted.
mask (Optional[np.array]): A mask that defines the blending between 'src_image' and 'dst_image'.
Range: [0.0, 1.0], Shape: (H, W). The output is calculate per-pixel according to
`src * mask + dst * (1 - mask)`.
"""
if mask is None:
dst_image[box.top : box.bottom, box.left : box.right] = src_image
else:
mask = np.expand_dims(mask, -1)
dst_image_box = dst_image[box.top : box.bottom, box.left : box.right]
dst_image[box.top : box.bottom, box.left : box.right] = src_image * mask + dst_image_box * (1.0 - mask)
def seam_blend(ia1: np.ndarray, ia2: np.ndarray, blend_amount: int, x_seam: bool) -> np.ndarray:
"""Blend two overlapping tile sections using a seams to find a path.
It is assumed that input images will be RGB np arrays and are the same size.
Args:
ia1 (np.array): Image array 1 Shape: (H, W, C).
ia2 (np.array): Image array 2 Shape: (H, W, C).
x_seam (bool): If the images should be blended on the x axis or not.
blend_amount (int): The size of the blur to use on the seam. Half of this value will be used to avoid the edges of the image.
"""
assert ia1.shape == ia2.shape
assert ia2.size == ia2.size
def shift(arr, num, fill_value=255.0):
result = np.full_like(arr, fill_value)
if num > 0:
result[num:] = arr[:-num]
elif num < 0:
result[:num] = arr[-num:]
else:
result[:] = arr
return result
# Assume RGB and convert to grey
# Could offer other options for the luminance conversion
# BT.709 [0.2126, 0.7152, 0.0722], BT.2020 [0.2627, 0.6780, 0.0593])
# it might not have a huge impact due to the blur that is applied over the seam
iag1 = np.dot(ia1, [0.2989, 0.5870, 0.1140]) # BT.601 perceived brightness
iag2 = np.dot(ia2, [0.2989, 0.5870, 0.1140])
# Calc Difference between the images
ia = iag2 - iag1
# If the seam is on the X-axis rotate the array so we can treat it like a vertical seam
if x_seam:
ia = np.rot90(ia, 1)
# Calc max and min X & Y limits
# gutter is used to avoid the blur hitting the edge of the image
gutter = math.ceil(blend_amount / 2) if blend_amount > 0 else 0
max_y, max_x = ia.shape
max_x -= gutter
min_x = gutter
# Calc the energy in the difference
# Could offer different energy calculations e.g. Sobel or Scharr
energy = np.abs(np.gradient(ia, axis=0)) + np.abs(np.gradient(ia, axis=1))
# Find the starting position of the seam
res = np.copy(energy)
for y in range(1, max_y):
row = res[y, :]
rowl = shift(row, -1)
rowr = shift(row, 1)
res[y, :] = res[y - 1, :] + np.min([row, rowl, rowr], axis=0)
# create an array max_y long
lowest_energy_line = np.empty([max_y], dtype="uint16")
lowest_energy_line[max_y - 1] = np.argmin(res[max_y - 1, min_x : max_x - 1])
# Calc the path of the seam
# could offer options for larger search than just 1 pixel by adjusting lpos and rpos
for ypos in range(max_y - 2, -1, -1):
lowest_pos = lowest_energy_line[ypos + 1]
lpos = lowest_pos - 1
rpos = lowest_pos + 1
lpos = np.clip(lpos, min_x, max_x - 1)
rpos = np.clip(rpos, min_x, max_x - 1)
lowest_energy_line[ypos] = np.argmin(energy[ypos, lpos : rpos + 1]) + lpos
# Draw the mask
mask = np.zeros_like(ia)
for ypos in range(0, max_y):
to_fill = lowest_energy_line[ypos]
mask[ypos, :to_fill] = 1
# If the seam is on the X-axis rotate the array back
if x_seam:
mask = np.rot90(mask, 3)
# blur the seam mask if required
if blend_amount > 0:
mask = cv2.blur(mask, (blend_amount, blend_amount))
# for visual debugging
# from PIL import Image
# m_image = Image.fromarray((mask * 255.0).astype("uint8"))
# copy ia2 over ia1 while applying the seam mask
mask = np.expand_dims(mask, -1)
blended_image = ia1 * mask + ia2 * (1.0 - mask)
# for visual debugging
# i1 = Image.fromarray(ia1.astype("uint8"))
# i2 = Image.fromarray(ia2.astype("uint8"))
# b_image = Image.fromarray(blended_image.astype("uint8"))
# print(f"{ia1.shape}, {ia2.shape}, {mask.shape}, {blended_image.shape}")
# print(f"{i1.size}, {i2.size}, {m_image.size}, {b_image.size}")
return blended_image