Updates based on code review by @RyanJDick

This commit is contained in:
skunkworxdark 2023-12-09 18:38:07 +00:00
parent 5f37176938
commit 494c2a9b05
3 changed files with 27 additions and 19 deletions

View File

@ -66,7 +66,7 @@ class CalculateImageTilesInvocation(BaseInvocation):
@invocation(
"calculate_image_tiles_Even_Split",
"calculate_image_tiles_even_split",
title="Calculate Image Tiles Even Split",
tags=["tiles"],
category="tiles",
@ -93,7 +93,7 @@ class CalculateImageTilesEvenSplitInvocation(BaseInvocation):
default=0.25,
ge=0,
lt=1,
description="Overlap amount of tile size (0-1)",
description="Overlap between adjacent tiles as a fraction of the tile's dimensions (0-1)",
)
def invoke(self, context: InvocationContext) -> CalculateImageTilesOutput:
@ -126,7 +126,8 @@ class CalculateImageTilesMinimumOverlapInvocation(BaseInvocation):
min_overlap: int = InputField(
default=128,
ge=0,
description="minimum tile overlap size (must be a multiple of 8)",
multiple_of=8,
description="Minimum overlap between adjacent tiles, in pixels(must be a multiple of 8).",
)
round_to_8: bool = InputField(
default=False,
@ -260,10 +261,12 @@ class MergeTilesToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
merge_tiles_with_linear_blending(
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
)
else:
elif self.blend_mode == "Seam":
merge_tiles_with_seam_blending(
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
)
else:
raise ValueError(f"Unsupported blend mode: '{self.blend_mode}'.")
# Convert into a PIL image and save
pil_image = Image.fromarray(np_image)

View File

@ -2,11 +2,12 @@ import math
from typing import Union
import numpy as np
from invokeai.app.invocations.latent import LATENT_SCALE_FACTOR
from invokeai.backend.tiles.utils import TBLR, Tile, paste, seam_blend
def calc_overlap(tiles: list[Tile], num_tiles_x, num_tiles_y) -> list[Tile]:
def calc_overlap(tiles: list[Tile], num_tiles_x: int, num_tiles_y: int) -> list[Tile]:
"""Calculate and update the overlap of a list of tiles.
Args:
@ -110,23 +111,27 @@ def calc_tiles_even_split(
image_width (int): The image width in px.
num_x_tiles (int): The number of tile to split the image into on the X-axis.
num_y_tiles (int): The number of tile to split the image into on the Y-axis.
overlap (int, optional): The target overlap amount of the tiles size. Defaults to 0.
overlap (float, optional): The target overlap amount of the tiles size. Defaults to 0.
Returns:
list[Tile]: A list of tiles that cover the image shape. Ordered from left-to-right, top-to-bottom.
"""
# Ensure tile size is divisible by 8
if image_width % 8 != 0 or image_height % 8 != 0:
if image_width % LATENT_SCALE_FACTOR != 0 or image_height % LATENT_SCALE_FACTOR != 0:
raise ValueError(f"image size (({image_width}, {image_height})) must be divisible by 8")
# Calculate the overlap size based on the percentage and adjust it to be divisible by 8 (rounding up)
overlap_x = 8 * math.ceil(int((image_width / num_tiles_x) * overlap) / 8)
overlap_y = 8 * math.ceil(int((image_height / num_tiles_y) * overlap) / 8)
overlap_x = LATENT_SCALE_FACTOR * math.ceil(int((image_width / num_tiles_x) * overlap) / LATENT_SCALE_FACTOR)
overlap_y = LATENT_SCALE_FACTOR * math.ceil(int((image_height / num_tiles_y) * overlap) / LATENT_SCALE_FACTOR)
# Calculate the tile size based on the number of tiles and overlap, and ensure it's divisible by 8 (rounding down)
tile_size_x = 8 * math.floor(((image_width + overlap_x * (num_tiles_x - 1)) // num_tiles_x) / 8)
tile_size_y = 8 * math.floor(((image_height + overlap_y * (num_tiles_y - 1)) // num_tiles_y) / 8)
tile_size_x = LATENT_SCALE_FACTOR * math.floor(
((image_width + overlap_x * (num_tiles_x - 1)) // num_tiles_x) / LATENT_SCALE_FACTOR
)
tile_size_y = LATENT_SCALE_FACTOR * math.floor(
((image_height + overlap_y * (num_tiles_y - 1)) // num_tiles_y) / LATENT_SCALE_FACTOR
)
# tiles[y * num_tiles_x + x] is the tile for the y'th row, x'th column.
tiles: list[Tile] = []
@ -196,13 +201,13 @@ def calc_tiles_min_overlap(
for tile_idx_y in range(num_tiles_y):
top = (tile_idx_y * (image_height - tile_height)) // (num_tiles_y - 1) if num_tiles_y > 1 else 0
if round_to_8:
top = 8 * (top // 8)
top = LATENT_SCALE_FACTOR * (top // LATENT_SCALE_FACTOR)
bottom = top + tile_height
for tile_idx_x in range(num_tiles_x):
left = (tile_idx_x * (image_width - tile_width)) // (num_tiles_x - 1) if num_tiles_x > 1 else 0
if round_to_8:
left = 8 * (left // 8)
left = LATENT_SCALE_FACTOR * (left // LATENT_SCALE_FACTOR)
right = left + tile_width
tile = Tile(

View File

@ -33,10 +33,10 @@ def paste(dst_image: np.ndarray, src_image: np.ndarray, box: TBLR, mask: Optiona
"""Paste a source image into a destination image.
Args:
dst_image (torch.Tensor): The destination image to paste into. Shape: (H, W, C).
src_image (torch.Tensor): The source image to paste. Shape: (H, W, C). H and W must be compatible with 'box'.
dst_image (np.array): The destination image to paste into. Shape: (H, W, C).
src_image (np.array): The source image to paste. Shape: (H, W, C). H and W must be compatible with 'box'.
box (TBLR): Box defining the region in the 'dst_image' where 'src_image' will be pasted.
mask (Optional[torch.Tensor]): A mask that defines the blending between 'src_image' and 'dst_image'.
mask (Optional[np.array]): A mask that defines the blending between 'src_image' and 'dst_image'.
Range: [0.0, 1.0], Shape: (H, W). The output is calculate per-pixel according to
`src * mask + dst * (1 - mask)`.
"""
@ -55,8 +55,8 @@ def seam_blend(ia1: np.ndarray, ia2: np.ndarray, blend_amount: int, x_seam: bool
It is assumed that input images will be RGB np arrays and are the same size.
Args:
ia1 (torch.Tensor): Image array 1 Shape: (H, W, C).
ia2 (torch.Tensor): Image array 2 Shape: (H, W, C).
ia1 (np.array): Image array 1 Shape: (H, W, C).
ia2 (np.array): Image array 2 Shape: (H, W, C).
x_seam (bool): If the images should be blended on the x axis or not.
blend_amount (int): The size of the blur to use on the seam. Half of this value will be used to avoid the edges of the image.
"""
@ -74,7 +74,7 @@ def seam_blend(ia1: np.ndarray, ia2: np.ndarray, blend_amount: int, x_seam: bool
return result
# Assume RGB and convert to grey
iag1 = np.dot(ia1, [0.2989, 0.5870, 0.1140])
iag1 = np.dot(ia1, [0.2989, 0.5870, 0.1140]) # BT.601 perceived brightness
iag2 = np.dot(ia2, [0.2989, 0.5870, 0.1140])
# Calc Difference between the images