InvokeAI/invokeai/backend/image_util/realesrgan/realesrgan.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

275 lines
10 KiB
Python
Raw Permalink Normal View History

import math
from enum import Enum
from pathlib import Path
from typing import Any, Optional
import cv2
import numpy as np
import numpy.typing as npt
import torch
from cv2.typing import MatLike
from tqdm import tqdm
from invokeai.backend.image_util.basicsr.rrdbnet_arch import RRDBNet
from invokeai.backend.util.devices import choose_torch_device
"""
Adapted from https://github.com/xinntao/Real-ESRGAN/blob/master/realesrgan/utils.py
License is BSD3, copied to `LICENSE` in this directory.
The adaptation here has a few changes:
- Remove print statements, use `tqdm` to show progress
- Remove unused "outscale" logic, which simply scales the final image to a given factor
- Remove `dni_weight` logic, which was only used when multiple models were used
- Remove logic to fetch models from network
- Add types, rename a few things
"""
class ImageMode(str, Enum):
L = "L"
RGB = "RGB"
RGBA = "RGBA"
class RealESRGAN:
"""A helper class for upsampling images with RealESRGAN.
Args:
scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
model (nn.Module): The defined network. Default: None.
tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
input images into tiles, and then process each of them. Finally, they will be merged into one image.
0 denotes for do not use tile. Default: 0.
tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
half (float): Whether to use half precision during inference. Default: False.
"""
output: torch.Tensor
def __init__(
self,
scale: int,
model_path: Path,
model: RRDBNet,
tile: int = 0,
tile_pad: int = 10,
pre_pad: int = 10,
half: bool = False,
) -> None:
self.scale = scale
self.tile_size = tile
self.tile_pad = tile_pad
self.pre_pad = pre_pad
self.mod_scale: Optional[int] = None
self.half = half
self.device = choose_torch_device()
loadnet = torch.load(model_path, map_location=torch.device("cpu"))
# prefer to use params_ema
if "params_ema" in loadnet:
keyname = "params_ema"
else:
keyname = "params"
model.load_state_dict(loadnet[keyname], strict=True)
model.eval()
self.model = model.to(self.device)
if self.half:
self.model = self.model.half()
def pre_process(self, img: MatLike) -> None:
"""Pre-process, such as pre-pad and mod pad, so that the images can be divisible"""
img_tensor: torch.Tensor = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
self.img = img_tensor.unsqueeze(0).to(self.device)
if self.half:
self.img = self.img.half()
# pre_pad
if self.pre_pad != 0:
self.img = torch.nn.functional.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), "reflect")
# mod pad for divisible borders
if self.scale == 2:
self.mod_scale = 2
elif self.scale == 1:
self.mod_scale = 4
if self.mod_scale is not None:
self.mod_pad_h, self.mod_pad_w = 0, 0
_, _, h, w = self.img.size()
if h % self.mod_scale != 0:
self.mod_pad_h = self.mod_scale - h % self.mod_scale
if w % self.mod_scale != 0:
self.mod_pad_w = self.mod_scale - w % self.mod_scale
self.img = torch.nn.functional.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), "reflect")
def process(self) -> None:
# model inference
self.output = self.model(self.img)
def tile_process(self) -> None:
"""It will first crop input images to tiles, and then process each tile.
Finally, all the processed tiles are merged into one images.
Modified from: https://github.com/ata4/esrgan-launcher
"""
batch, channel, height, width = self.img.shape
output_height = height * self.scale
output_width = width * self.scale
output_shape = (batch, channel, output_height, output_width)
# start with black image
self.output = self.img.new_zeros(output_shape)
tiles_x = math.ceil(width / self.tile_size)
tiles_y = math.ceil(height / self.tile_size)
# loop over all tiles
total_steps = tiles_y * tiles_x
for i in tqdm(range(total_steps), desc="Upscaling"):
y = i // tiles_x
x = i % tiles_x
# extract tile from input image
ofs_x = x * self.tile_size
ofs_y = y * self.tile_size
# input tile area on total image
input_start_x = ofs_x
input_end_x = min(ofs_x + self.tile_size, width)
input_start_y = ofs_y
input_end_y = min(ofs_y + self.tile_size, height)
# input tile area on total image with padding
input_start_x_pad = max(input_start_x - self.tile_pad, 0)
input_end_x_pad = min(input_end_x + self.tile_pad, width)
input_start_y_pad = max(input_start_y - self.tile_pad, 0)
input_end_y_pad = min(input_end_y + self.tile_pad, height)
# input tile dimensions
input_tile_width = input_end_x - input_start_x
input_tile_height = input_end_y - input_start_y
input_tile = self.img[
:,
:,
input_start_y_pad:input_end_y_pad,
input_start_x_pad:input_end_x_pad,
]
# upscale tile
with torch.no_grad():
output_tile = self.model(input_tile)
# output tile area on total image
output_start_x = input_start_x * self.scale
output_end_x = input_end_x * self.scale
output_start_y = input_start_y * self.scale
output_end_y = input_end_y * self.scale
# output tile area without padding
output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
# put tile into output image
self.output[:, :, output_start_y:output_end_y, output_start_x:output_end_x] = output_tile[
:,
:,
output_start_y_tile:output_end_y_tile,
output_start_x_tile:output_end_x_tile,
]
def post_process(self) -> torch.Tensor:
# remove extra pad
if self.mod_scale is not None:
_, _, h, w = self.output.size()
self.output = self.output[
:,
:,
0 : h - self.mod_pad_h * self.scale,
0 : w - self.mod_pad_w * self.scale,
]
# remove prepad
if self.pre_pad != 0:
_, _, h, w = self.output.size()
self.output = self.output[
:,
:,
0 : h - self.pre_pad * self.scale,
0 : w - self.pre_pad * self.scale,
]
return self.output
@torch.no_grad()
def upscale(self, img: MatLike, esrgan_alpha_upscale: bool = True) -> npt.NDArray[Any]:
np_img = img.astype(np.float32)
alpha: Optional[np.ndarray] = None
if np.max(np_img) > 256:
# 16-bit image
max_range = 65535
else:
max_range = 255
np_img = np_img / max_range
if len(np_img.shape) == 2:
# grayscale image
img_mode = ImageMode.L
np_img = cv2.cvtColor(np_img, cv2.COLOR_GRAY2RGB)
elif np_img.shape[2] == 4:
# RGBA image with alpha channel
img_mode = ImageMode.RGBA
alpha = np_img[:, :, 3]
np_img = np_img[:, :, 0:3]
np_img = cv2.cvtColor(np_img, cv2.COLOR_BGR2RGB)
if esrgan_alpha_upscale:
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
else:
img_mode = ImageMode.RGB
np_img = cv2.cvtColor(np_img, cv2.COLOR_BGR2RGB)
# ------------------- process image (without the alpha channel) ------------------- #
self.pre_process(np_img)
if self.tile_size > 0:
self.tile_process()
else:
self.process()
output_tensor = self.post_process()
output_img: npt.NDArray[Any] = output_tensor.data.squeeze().float().cpu().clamp_(0, 1).numpy()
output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
if img_mode is ImageMode.L:
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
# ------------------- process the alpha channel if necessary ------------------- #
if img_mode is ImageMode.RGBA:
if esrgan_alpha_upscale:
assert alpha is not None
self.pre_process(alpha)
if self.tile_size > 0:
self.tile_process()
else:
self.process()
output_alpha_tensor = self.post_process()
output_alpha: npt.NDArray[Any] = output_alpha_tensor.data.squeeze().float().cpu().clamp_(0, 1).numpy()
output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
else: # use the cv2 resize for alpha channel
assert alpha is not None
h, w = alpha.shape[0:2]
output_alpha = cv2.resize(
alpha,
(w * self.scale, h * self.scale),
interpolation=cv2.INTER_LINEAR,
)
# merge the alpha channel
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
output_img[:, :, 3] = output_alpha
# ------------------------------ return ------------------------------ #
if max_range == 65535: # 16-bit image
output = (output_img * 65535.0).round().astype(np.uint16)
else:
output = (output_img * 255.0).round().astype(np.uint8)
return output