InvokeAI/invokeai/app/invocations/mask.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

118 lines
4.4 KiB
Python
Raw Normal View History

import numpy as np
2024-03-08 15:30:55 +00:00
import torch
from pydantic import BaseModel
2024-03-08 15:30:55 +00:00
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
2024-03-08 15:30:55 +00:00
InvocationContext,
invocation,
invocation_output,
2024-03-08 15:30:55 +00:00
)
from invokeai.app.invocations.fields import ColorField, ImageField, InputField, OutputField, TensorField, WithMetadata
2024-03-08 15:30:55 +00:00
from invokeai.app.invocations.primitives import MaskOutput
@invocation(
"rectangle_mask",
title="Create Rectangle Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class RectangleMaskInvocation(BaseInvocation, WithMetadata):
"""Create a rectangular mask."""
height: int = InputField(description="The height of the entire mask.")
width: int = InputField(description="The width of the entire mask.")
y_top: int = InputField(description="The top y-coordinate of the rectangular masked region (inclusive).")
x_left: int = InputField(description="The left x-coordinate of the rectangular masked region (inclusive).")
rectangle_height: int = InputField(description="The height of the rectangular masked region.")
rectangle_width: int = InputField(description="The width of the rectangular masked region.")
def invoke(self, context: InvocationContext) -> MaskOutput:
mask = torch.zeros((1, self.height, self.width), dtype=torch.bool)
mask[:, self.y_top : self.y_top + self.rectangle_height, self.x_left : self.x_left + self.rectangle_width] = (
True
)
2024-03-08 15:30:55 +00:00
mask_tensor_name = context.tensors.save(mask)
2024-03-08 15:30:55 +00:00
return MaskOutput(
mask=TensorField(tensor_name=mask_tensor_name),
2024-03-08 15:30:55 +00:00
width=self.width,
height=self.height,
)
class PromptColorPair(BaseModel):
prompt: str
color: ColorField
class PromptMaskPair(BaseModel):
prompt: str
mask: TensorField
default_prompt_color_pairs = [
PromptColorPair(prompt="Strawberries", color=ColorField(r=200, g=0, b=0, a=255)),
PromptColorPair(prompt="Frog", color=ColorField(r=0, g=200, b=0, a=255)),
PromptColorPair(prompt="Banana", color=ColorField(r=0, g=0, b=200, a=255)),
PromptColorPair(prompt="A gnome", color=ColorField(r=215, g=0, b=255, a=255)),
]
@invocation_output("extract_masks_and_prompts_output")
class ExtractMasksAndPromptsOutput(BaseInvocationOutput):
prompt_mask_pairs: list[PromptMaskPair] = OutputField(description="List of prompts and their corresponding masks.")
@invocation(
"extract_masks_and_prompts",
title="Extract Masks and Prompts",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class ExtractMasksAndPromptsInvocation(BaseInvocation):
"""Extract masks and prompts from a segmented mask image and prompt-to-color map."""
prompt_color_pairs: list[PromptColorPair] = InputField(
default=default_prompt_color_pairs, description="List of prompts and their corresponding colors."
)
image: ImageField = InputField(description="Mask to apply to the prompts.")
def invoke(self, context: InvocationContext) -> ExtractMasksAndPromptsOutput:
prompt_mask_pairs: list[PromptMaskPair] = []
image = context.images.get_pil(self.image.image_name)
image_as_tensor = torch.from_numpy(np.array(image, dtype=np.uint8))
for pair in self.prompt_color_pairs:
# TODO(ryand): Make this work for both RGB and RGBA images.
mask = torch.all(image_as_tensor == torch.tensor(pair.color.tuple()), dim=-1)
mask_tensor_name = context.tensors.save(mask)
prompt_mask_pairs.append(PromptMaskPair(prompt=pair.prompt, mask=TensorField(tensor_name=mask_tensor_name)))
return ExtractMasksAndPromptsOutput(prompt_mask_pairs=prompt_mask_pairs)
@invocation_output("split_mask_prompt_pair_output")
class SplitMaskPromptPairOutput(BaseInvocationOutput):
prompt: str = OutputField()
mask: TensorField = OutputField()
@invocation(
"split_mask_prompt_pair",
title="Split Mask-Prompt pair",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class SplitMaskPromptPair(BaseInvocation):
"""Extract masks and prompts from a segmented mask image and prompt-to-color map."""
prompt_mask_pair: PromptMaskPair = InputField()
def invoke(self, context: InvocationContext) -> SplitMaskPromptPairOutput:
return SplitMaskPromptPairOutput(mask=self.prompt_mask_pair.mask, prompt=self.prompt_mask_pair.prompt)