Add RectangleMaskInvocation.

This commit is contained in:
Ryan Dick 2024-03-08 10:30:55 -05:00 committed by Kent Keirsey
parent d6be7662c9
commit c22d772062
3 changed files with 51 additions and 41 deletions

View File

@ -1,41 +0,0 @@
import numpy as np
import torch
from PIL.Image import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField
@invocation(
"add_conditioning_mask",
title="Add Conditioning Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class AddConditioningMaskInvocation(BaseInvocation):
"""Add a mask to an existing conditioning tensor."""
conditioning: ConditioningField = InputField(description="The conditioning tensor to add a mask to.")
image: ImageField = InputField(
description="A mask image to add to the conditioning tensor. Only the first channel of the image is used. "
"Pixels <128 are excluded from the mask, pixels >=128 are included in the mask."
)
@staticmethod
def convert_image_to_mask(image: Image) -> torch.Tensor:
"""Convert a PIL image to a uint8 mask tensor."""
np_image = np.array(image)
torch_image = torch.from_numpy(np_image[0, :, :])
mask = torch_image >= 128
return mask.to(dtype=torch.uint8)
def invoke(self, context: InvocationContext) -> ConditioningOutput:
image = context.services.images.get_pil_image(self.image.image_name)
mask = self.convert_image_to_mask(image)
mask_name = f"{context.graph_execution_state_id}__{self.id}_conditioning_mask"
context.services.latents.save(mask_name, mask)
self.conditioning.mask_name = mask_name
return ConditioningOutput(conditioning=self.conditioning)

View File

@ -0,0 +1,40 @@
import torch
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
InvocationContext,
invocation,
)
from invokeai.app.invocations.fields import InputField, MaskField, WithMetadata
from invokeai.app.invocations.primitives import MaskOutput
@invocation(
"rectangle_mask",
title="Create Rectangle Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class RectangleMaskInvocation(BaseInvocation, WithMetadata):
"""Create a rectangular mask."""
height: int = InputField(description="The height of the entire mask.")
width: int = InputField(description="The width of the entire mask.")
y_top: int = InputField(description="The top y-coordinate of the rectangular masked region (inclusive).")
x_left: int = InputField(description="The left x-coordinate of the rectangular masked region (inclusive).")
rectangle_height: int = InputField(description="The height of the rectangular masked region.")
rectangle_width: int = InputField(description="The width of the rectangular masked region.")
def invoke(self, context: InvocationContext) -> MaskOutput:
mask = torch.zeros((1, self.height, self.width), dtype=torch.bool)
mask[
:, self.y_top : self.y_top + self.rectangle_height, self.x_left : self.x_left + self.rectangle_width
] = True
mask_name = context.tensors.save(mask)
return MaskOutput(
mask=MaskField(mask_name=mask_name),
width=self.width,
height=self.height,
)

View File

@ -14,6 +14,7 @@ from invokeai.app.invocations.fields import (
Input,
InputField,
LatentsField,
MaskField,
OutputField,
UIComponent,
)
@ -405,9 +406,19 @@ class ColorInvocation(BaseInvocation):
# endregion
# region Conditioning
@invocation_output("mask_output")
class MaskOutput(BaseInvocationOutput):
"""A torch mask tensor."""
mask: MaskField = OutputField(description="The mask.")
width: int = OutputField(description="The width of the mask in pixels.")
height: int = OutputField(description="The height of the mask in pixels.")
@invocation_output("conditioning_output")
class ConditioningOutput(BaseInvocationOutput):
"""Base class for nodes that output a single conditioning tensor"""