InvokeAI/invokeai/app/services/model_manager_service.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

410 lines
14 KiB
Python
Raw Normal View History

# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
from __future__ import annotations
import torch
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Optional, Union, Callable, List, Tuple, types, TYPE_CHECKING
from dataclasses import dataclass
from invokeai.backend.model_management.model_manager import (
ModelManager,
2023-06-11 03:12:21 +00:00
BaseModelType,
ModelType,
SubModelType,
2023-06-12 02:52:30 +00:00
ModelInfo,
)
2023-05-12 04:14:56 +00:00
from invokeai.app.models.exceptions import CanceledException
2023-05-18 21:17:45 +00:00
from .config import InvokeAIAppConfig
2023-05-12 01:24:29 +00:00
from ...backend.util import choose_precision, choose_torch_device
if TYPE_CHECKING:
from ..invocations.baseinvocation import BaseInvocation, InvocationContext
class ModelManagerServiceBase(ABC):
"""Responsible for managing models on disk and in memory"""
2023-05-12 01:24:29 +00:00
@abstractmethod
def __init__(
self,
2023-05-18 21:17:45 +00:00
config: InvokeAIAppConfig,
logger: types.ModuleType,
2023-05-12 01:24:29 +00:00
):
"""
2023-07-04 21:05:35 +00:00
Initialize with the path to the models.yaml config file.
2023-05-12 01:24:29 +00:00
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
pass
2023-07-04 21:05:35 +00:00
@abstractmethod
def get_model(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
node: Optional[BaseInvocation] = None,
context: Optional[InvocationContext] = None,
2023-06-12 02:52:30 +00:00
) -> ModelInfo:
2023-07-04 21:05:35 +00:00
"""Retrieve the indicated model with name and type.
submodel can be used to get a part (such as the vae)
of a diffusers pipeline."""
pass
@property
@abstractmethod
def logger(self):
pass
@abstractmethod
def model_exists(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
pass
@abstractmethod
2023-06-11 03:12:21 +00:00
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
"""
pass
@abstractmethod
2023-06-11 03:12:21 +00:00
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
"""
Returns a list of all the model names known.
"""
pass
@abstractmethod
2023-06-11 03:12:21 +00:00
def list_models(self, base_model: Optional[BaseModelType] = None, model_type: Optional[ModelType] = None) -> dict:
"""
Return a dict of models in the format:
{ model_type1:
{ model_name1: {'status': 'active'|'cached'|'not loaded',
'model_name' : name,
'model_type' : SDModelType,
'description': description,
'format': 'folder'|'safetensors'|'ckpt'
},
model_name2: { etc }
},
model_type2:
{ model_name_n: etc
}
"""
pass
@abstractmethod
def add_model(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
clobber: bool = False
) -> None:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
2023-07-04 21:05:35 +00:00
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def del_model(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
):
"""
2023-07-04 21:05:35 +00:00
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well. Call commit() to write to disk.
"""
pass
2023-07-03 23:32:54 +00:00
@abstractmethod
def heuristic_import(self,
items_to_import: Set[str],
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None,
)->Dict[str, AddModelResult]:
'''Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
The prediction type helper is necessary to distinguish between
models based on Stable Diffusion 2 Base (requiring
SchedulerPredictionType.Epsilson) and Stable Diffusion 768
(requiring SchedulerPredictionType.VPrediction). It is
generally impossible to do this programmatically, so the
prediction_type_helper usually asks the user to choose.
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
'''
pass
@abstractmethod
def commit(self, conf_file: Path = None) -> None:
"""
Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the
original file/database used to initialize the object.
"""
pass
# simple implementation
class ModelManagerService(ModelManagerServiceBase):
"""Responsible for managing models on disk and in memory"""
def __init__(
self,
2023-05-18 21:17:45 +00:00
config: InvokeAIAppConfig,
logger: types.ModuleType,
):
"""
2023-07-04 21:05:35 +00:00
Initialize with the path to the models.yaml config file.
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
2023-05-18 21:17:45 +00:00
if config.model_conf_path and config.model_conf_path.exists():
config_file = config.model_conf_path
2023-05-12 01:24:29 +00:00
else:
2023-05-18 21:17:45 +00:00
config_file = config.root_dir / "configs/models.yaml"
2023-05-12 01:24:29 +00:00
if not config_file.exists():
raise IOError(f"The file {config_file} could not be found.")
logger.debug(f'config file={config_file}')
device = torch.device(choose_torch_device())
2023-05-23 00:48:22 +00:00
precision = config.precision
if precision == "auto":
2023-05-12 01:24:29 +00:00
precision = choose_precision(device)
2023-05-23 00:48:22 +00:00
dtype = torch.float32 if precision == 'float32' else torch.float16
2023-05-12 01:24:29 +00:00
# this is transitional backward compatibility
# support for the deprecated `max_loaded_models`
# configuration value. If present, then the
# cache size is set to 2.5 GB times
# the number of max_loaded_models. Otherwise
# use new `max_cache_size` config setting
max_cache_size = config.max_cache_size \
if hasattr(config,'max_cache_size') \
else config.max_loaded_models * 2.5
2023-07-04 21:05:35 +00:00
logger.debug(f"Maximum RAM cache size: {max_cache_size} GiB")
2023-05-12 01:24:29 +00:00
sequential_offload = config.sequential_guidance
self.mgr = ModelManager(
config=config_file,
device_type=device,
precision=dtype,
max_cache_size=max_cache_size,
sequential_offload=sequential_offload,
logger=logger,
)
2023-05-12 01:24:29 +00:00
logger.info('Model manager service initialized')
def get_model(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
node: Optional[BaseInvocation] = None,
context: Optional[InvocationContext] = None,
2023-06-12 02:52:30 +00:00
) -> ModelInfo:
"""
Retrieve the indicated model. submodel can be used to get a
part (such as the vae) of a diffusers mode.
"""
2023-05-12 04:14:56 +00:00
# if we are called from within a node, then we get to emit
# load start and complete events
if node and context:
self._emit_load_event(
node=node,
context=context,
model_name=model_name,
2023-06-11 03:12:21 +00:00
base_model=base_model,
2023-05-12 04:14:56 +00:00
model_type=model_type,
2023-06-11 03:12:21 +00:00
submodel=submodel,
2023-05-12 04:14:56 +00:00
)
model_info = self.mgr.get_model(
model_name,
2023-06-11 03:12:21 +00:00
base_model,
model_type,
submodel,
)
2023-05-12 04:14:56 +00:00
if node and context:
self._emit_load_event(
node=node,
context=context,
model_name=model_name,
2023-06-11 03:12:21 +00:00
base_model=base_model,
2023-05-12 04:14:56 +00:00
model_type=model_type,
submodel=submodel,
model_info=model_info
)
2023-07-04 21:05:35 +00:00
2023-05-12 04:14:56 +00:00
return model_info
def model_exists(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
"""
Given a model name, returns True if it is a valid
identifier.
"""
return self.mgr.model_exists(
2023-05-11 04:19:20 +00:00
model_name,
2023-06-11 03:12:21 +00:00
base_model,
model_type,
)
2023-06-11 03:12:21 +00:00
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
"""
2023-06-11 03:12:21 +00:00
return self.mgr.model_info(model_name, base_model, model_type)
2023-06-11 03:12:21 +00:00
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
"""
Returns a list of all the model names known.
"""
return self.mgr.model_names()
2023-06-11 03:12:21 +00:00
def list_models(
self,
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None
) -> list[dict]:
# ) -> dict:
"""
Return a list of models.
"""
2023-06-11 03:12:21 +00:00
return self.mgr.list_models(base_model, model_type)
def add_model(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
clobber: bool = False,
)->None:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
2023-07-04 21:05:35 +00:00
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
2023-06-11 03:12:21 +00:00
return self.mgr.add_model(model_name, base_model, model_type, model_attributes, clobber)
def del_model(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
):
"""
2023-07-04 21:05:35 +00:00
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well. Call commit() to write to disk.
"""
self.mgr.del_model(model_name, base_model, model_type)
def commit(self, conf_file: Optional[Path]=None):
"""
Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the
original file/database used to initialize the object.
"""
return self.mgr.commit(conf_file)
2023-05-12 04:14:56 +00:00
def _emit_load_event(
self,
node,
context,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
2023-06-12 02:52:30 +00:00
model_info: Optional[ModelInfo] = None,
2023-05-12 04:14:56 +00:00
):
if context.services.queue.is_canceled(context.graph_execution_state_id):
raise CanceledException()
2023-05-12 04:14:56 +00:00
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[node.id]
2023-05-26 03:28:15 +00:00
if model_info:
context.services.events.emit_model_load_completed(
2023-05-12 04:14:56 +00:00
graph_execution_state_id=context.graph_execution_state_id,
node=node.dict(),
source_node_id=source_node_id,
model_name=model_name,
2023-06-11 03:12:21 +00:00
base_model=base_model,
2023-05-12 04:14:56 +00:00
model_type=model_type,
submodel=submodel,
2023-05-26 03:28:15 +00:00
model_info=model_info
2023-05-12 04:14:56 +00:00
)
else:
2023-05-26 03:28:15 +00:00
context.services.events.emit_model_load_started(
2023-05-12 04:14:56 +00:00
graph_execution_state_id=context.graph_execution_state_id,
node=node.dict(),
source_node_id=source_node_id,
model_name=model_name,
2023-06-11 03:12:21 +00:00
base_model=base_model,
2023-05-12 04:14:56 +00:00
model_type=model_type,
submodel=submodel,
)
2023-05-26 03:28:15 +00:00
@property
def logger(self):
return self.mgr.logger
2023-07-04 21:05:35 +00:00
2023-07-03 23:32:54 +00:00
def heuristic_import(self,
items_to_import: Set[str],
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None,
)->Dict[str, AddModelResult]:
'''Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
The prediction type helper is necessary to distinguish between
models based on Stable Diffusion 2 Base (requiring
SchedulerPredictionType.Epsilson) and Stable Diffusion 768
(requiring SchedulerPredictionType.VPrediction). It is
generally impossible to do this programmatically, so the
prediction_type_helper usually asks the user to choose.
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
'''
2023-07-04 21:05:35 +00:00
return self.mgr.heuristic_import(items_to_import, prediction_type_helper)