mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
fix bug in persistent model scheme
This commit is contained in:
parent
11ecf438f5
commit
2ef79b8bf3
@ -71,7 +71,7 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
# Handle invalid model parameter
|
||||
model = context.services.model_manager.get_model(self.model)
|
||||
model = context.services.model_manager.get_model(self.model,node=self,context=context)
|
||||
|
||||
# Get the source node id (we are invoking the prepared node)
|
||||
graph_execution_state = context.services.graph_execution_manager.get(
|
||||
|
@ -9,12 +9,10 @@ from diffusers import DiffusionPipeline
|
||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.models.exceptions import CanceledException
|
||||
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
|
||||
from ...backend.image_util.seamless import configure_model_padding
|
||||
from ...backend.model_management.model_manager import SDModelType
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
from ...backend.stable_diffusion.diffusers_pipeline import (
|
||||
ConditioningData, StableDiffusionGeneratorPipeline,
|
||||
@ -104,37 +102,11 @@ def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_c
|
||||
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
|
||||
return x
|
||||
|
||||
class ModelChooser:
|
||||
def choose_model(self, context: InvocationContext) -> StableDiffusionGeneratorPipeline:
|
||||
|
||||
if context.services.queue.is_canceled(context.graph_execution_state_id):
|
||||
raise CanceledException
|
||||
|
||||
# Get the source node id (we are invoking the prepared node)
|
||||
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
|
||||
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
||||
|
||||
context.services.events.emit_model_load_started(
|
||||
graph_execution_state_id=context.graph_execution_state_id,
|
||||
node=self.dict(),
|
||||
source_node_id=source_node_id,
|
||||
model_name=self.model,
|
||||
submodel=SDModelType.diffusers
|
||||
)
|
||||
|
||||
class ModelGetter:
|
||||
def get_model(self, context: InvocationContext) -> StableDiffusionGeneratorPipeline:
|
||||
model_manager = context.services.model_manager
|
||||
model_info = model_manager.get_model(self.model)
|
||||
model_ctx: StableDiffusionGeneratorPipeline = model_info.context
|
||||
context.services.events.emit_model_load_completed (
|
||||
graph_execution_state_id=context.graph_execution_state_id,
|
||||
node=self.dict(),
|
||||
source_node_id=source_node_id,
|
||||
model_name=self.model,
|
||||
submodel=SDModelType.diffusers,
|
||||
model_info=model_info
|
||||
)
|
||||
|
||||
return model_ctx
|
||||
model_info = model_manager.get_model(self.model,node=self,context=context)
|
||||
return model_info.context
|
||||
|
||||
class NoiseInvocation(BaseInvocation):
|
||||
"""Generates latent noise."""
|
||||
@ -167,7 +139,7 @@ class NoiseInvocation(BaseInvocation):
|
||||
|
||||
|
||||
# Text to image
|
||||
class TextToLatentsInvocation(BaseInvocation, ModelChooser):
|
||||
class TextToLatentsInvocation(BaseInvocation, ModelGetter):
|
||||
"""Generates latents from conditionings."""
|
||||
|
||||
type: Literal["t2l"] = "t2l"
|
||||
@ -236,7 +208,7 @@ class TextToLatentsInvocation(BaseInvocation, ModelChooser):
|
||||
def step_callback(state: PipelineIntermediateState):
|
||||
self.dispatch_progress(context, source_node_id, state)
|
||||
|
||||
with self.choose_model(context) as model:
|
||||
with self.get_model(context) as model:
|
||||
conditioning_data = self.get_conditioning_data(context, model)
|
||||
|
||||
# TODO: Verify the noise is the right size
|
||||
@ -257,8 +229,8 @@ class TextToLatentsInvocation(BaseInvocation, ModelChooser):
|
||||
latents=LatentsField(latents_name=name)
|
||||
)
|
||||
|
||||
def choose_model(self, context: InvocationContext) -> StableDiffusionGeneratorPipeline:
|
||||
model_ctx = super().choose_model(context)
|
||||
def get_model(self, context: InvocationContext) -> StableDiffusionGeneratorPipeline:
|
||||
model_ctx = super().get_model(context)
|
||||
|
||||
with model_ctx as model:
|
||||
model.scheduler = get_scheduler(
|
||||
@ -280,7 +252,7 @@ class TextToLatentsInvocation(BaseInvocation, ModelChooser):
|
||||
return model_ctx
|
||||
|
||||
|
||||
class LatentsToLatentsInvocation(TextToLatentsInvocation, ModelChooser):
|
||||
class LatentsToLatentsInvocation(TextToLatentsInvocation, ModelGetter):
|
||||
"""Generates latents using latents as base image."""
|
||||
|
||||
type: Literal["l2l"] = "l2l"
|
||||
@ -311,7 +283,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation, ModelChooser):
|
||||
def step_callback(state: PipelineIntermediateState):
|
||||
self.dispatch_progress(context, source_node_id, state)
|
||||
|
||||
with self.choose_model(context) as model:
|
||||
with self.get_model(context) as model:
|
||||
conditioning_data = self.get_conditioning_data(model)
|
||||
|
||||
# TODO: Verify the noise is the right size
|
||||
@ -346,7 +318,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation, ModelChooser):
|
||||
|
||||
|
||||
# Latent to image
|
||||
class LatentsToImageInvocation(BaseInvocation, ModelChooser):
|
||||
class LatentsToImageInvocation(BaseInvocation, ModelGetter):
|
||||
"""Generates an image from latents."""
|
||||
|
||||
type: Literal["l2i"] = "l2i"
|
||||
@ -371,7 +343,7 @@ class LatentsToImageInvocation(BaseInvocation, ModelChooser):
|
||||
latents = context.services.latents.get(self.latents.latents_name)
|
||||
|
||||
# TODO: this only really needs the vae
|
||||
with self.choose_model(context) as model:
|
||||
with self.get_model(context) as model:
|
||||
with torch.inference_mode():
|
||||
np_image = model.decode_latents(latents)
|
||||
image = model.numpy_to_pil(np_image)[0]
|
||||
@ -458,7 +430,7 @@ class ScaleLatentsInvocation(BaseInvocation):
|
||||
return LatentsOutput(latents=LatentsField(latents_name=name))
|
||||
|
||||
|
||||
class ImageToLatentsInvocation(BaseInvocation, ModelChooser):
|
||||
class ImageToLatentsInvocation(BaseInvocation, ModelGetter):
|
||||
"""Encodes an image into latents."""
|
||||
|
||||
type: Literal["i2l"] = "i2l"
|
||||
@ -483,7 +455,7 @@ class ImageToLatentsInvocation(BaseInvocation, ModelChooser):
|
||||
)
|
||||
|
||||
# TODO: this only really needs the vae
|
||||
model_info = self.choose_model(context)
|
||||
model_info = self.get_model(context)
|
||||
model: StableDiffusionGeneratorPipeline = model_info["model"]
|
||||
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
|
@ -109,6 +109,7 @@ class EventServiceBase:
|
||||
node: dict,
|
||||
source_node_id: str,
|
||||
model_name: str,
|
||||
model_type: SDModelType,
|
||||
submodel: SDModelType,
|
||||
) -> None:
|
||||
"""Emitted when a model is requested"""
|
||||
@ -119,6 +120,7 @@ class EventServiceBase:
|
||||
node=node,
|
||||
source_node_id=source_node_id,
|
||||
model_name=str,
|
||||
model_type=model_type,
|
||||
submodel=submodel,
|
||||
),
|
||||
)
|
||||
@ -129,6 +131,7 @@ class EventServiceBase:
|
||||
node: dict,
|
||||
source_node_id: str,
|
||||
model_name: str,
|
||||
model_type: SDModelType,
|
||||
submodel: SDModelType,
|
||||
model_info: SDModelInfo,
|
||||
) -> None:
|
||||
@ -140,6 +143,7 @@ class EventServiceBase:
|
||||
node=node,
|
||||
source_node_id=source_node_id,
|
||||
model_name=str,
|
||||
model_type=model_type,
|
||||
submodel=submodel,
|
||||
model_info=model_info,
|
||||
),
|
||||
|
@ -10,16 +10,18 @@ from invokeai.backend.model_management.model_manager import (
|
||||
ModelManager,
|
||||
SDModelType,
|
||||
SDModelInfo,
|
||||
types,
|
||||
torch,
|
||||
)
|
||||
from invokeai.app.models.exceptions import CanceledException
|
||||
from ...backend import Args,Globals # this must go when pr 3340 merged
|
||||
from ...backend.util import choose_precision, choose_torch_device
|
||||
|
||||
@dataclass
|
||||
class LastUsedModel:
|
||||
model_name: str
|
||||
model_type: SDModelType
|
||||
model_name: str=None
|
||||
model_type: SDModelType=None
|
||||
|
||||
last_used_model = LastUsedModel()
|
||||
|
||||
class ModelManagerServiceBase(ABC):
|
||||
"""Responsible for managing models on disk and in memory"""
|
||||
@ -42,7 +44,9 @@ class ModelManagerServiceBase(ABC):
|
||||
def get_model(self,
|
||||
model_name: str,
|
||||
model_type: SDModelType=SDModelType.diffusers,
|
||||
submodel: SDModelType=None
|
||||
submodel: SDModelType=None,
|
||||
node=None, # circular dependency issues, so untyped at moment
|
||||
context=None,
|
||||
)->SDModelInfo:
|
||||
"""Retrieve the indicated model with name and type.
|
||||
submodel can be used to get a part (such as the vae)
|
||||
@ -274,6 +278,8 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
model_name: str,
|
||||
model_type: SDModelType=SDModelType.diffusers,
|
||||
submodel: SDModelType=None,
|
||||
node=None,
|
||||
context=None,
|
||||
)->SDModelInfo:
|
||||
"""
|
||||
Retrieve the indicated model. submodel can be used to get a
|
||||
@ -287,20 +293,45 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
# displaced by model loader mechanism.
|
||||
# This is to work around lack of model loader at current time,
|
||||
# which was causing inconsistent model usage throughout graph.
|
||||
global last_used_model
|
||||
|
||||
if not model_name:
|
||||
self.logger.debug('No model name provided, defaulting to last loaded model')
|
||||
model_name = LastUsedModel.name
|
||||
model_type = model_type or LastUsedModel.type
|
||||
model_name = last_used_model.model_name
|
||||
model_type = model_type or last_used_model.model_type
|
||||
else:
|
||||
LastUsedModel.name = model_name
|
||||
LastUsedModel.model_type = model_type
|
||||
|
||||
return self.mgr.get_model(
|
||||
last_used_model.model_name = model_name
|
||||
last_used_model.model_type = model_type
|
||||
|
||||
# if we are called from within a node, then we get to emit
|
||||
# load start and complete events
|
||||
if node and context:
|
||||
self._emit_load_event(
|
||||
node=node,
|
||||
context=context,
|
||||
model_name=model_name,
|
||||
model_type=model_type,
|
||||
submodel=submodel
|
||||
)
|
||||
|
||||
model_info = self.mgr.get_model(
|
||||
model_name,
|
||||
model_type,
|
||||
submodel,
|
||||
)
|
||||
|
||||
if node and context:
|
||||
self._emit_load_event(
|
||||
node=node,
|
||||
context=context,
|
||||
model_name=model_name,
|
||||
model_type=model_type,
|
||||
submodel=submodel,
|
||||
model_info=model_info
|
||||
)
|
||||
|
||||
return model_info
|
||||
|
||||
def valid_model(self, model_name: str, model_type: SDModelType=SDModelType.diffusers) -> bool:
|
||||
"""
|
||||
Given a model name, returns True if it is a valid
|
||||
@ -466,6 +497,39 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
"""
|
||||
return self.mgr.commit(conf_file)
|
||||
|
||||
def _emit_load_event(
|
||||
self,
|
||||
node,
|
||||
context,
|
||||
model_name: str,
|
||||
model_type: SDModelType,
|
||||
submodel: SDModelType,
|
||||
model_info: SDModelInfo=None,
|
||||
):
|
||||
if context.services.queue.is_canceled(context.graph_execution_state_id):
|
||||
raise CanceledException
|
||||
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
|
||||
source_node_id = graph_execution_state.prepared_source_mapping[node.id]
|
||||
if context:
|
||||
context.services.events.emit_model_load_started(
|
||||
graph_execution_state_id=context.graph_execution_state_id,
|
||||
node=node.dict(),
|
||||
source_node_id=source_node_id,
|
||||
model_name=model_name,
|
||||
model_type=model_type,
|
||||
submodel=submodel,
|
||||
)
|
||||
else:
|
||||
context.services.events.emit_model_load_completed (
|
||||
graph_execution_state_id=context.graph_execution_state_id,
|
||||
node=node.dict(),
|
||||
source_node_id=source_node_id,
|
||||
model_name=model_name,
|
||||
model_type=model_type,
|
||||
submodel=submodel,
|
||||
model_info=model_info
|
||||
)
|
||||
|
||||
@property
|
||||
def logger(self):
|
||||
return self.mgr.logger
|
||||
|
Loading…
Reference in New Issue
Block a user