InvokeAI/invokeai/backend/stable_diffusion/multi_diffusion_pipeline.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

174 lines
7.5 KiB
Python
Raw Normal View History

from __future__ import annotations
from contextlib import nullcontext
from typing import Any, Callable, Optional
import torch
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
AddsMaskGuidance,
ControlNetData,
PipelineIntermediateState,
StableDiffusionGeneratorPipeline,
T2IAdapterData,
is_inpainting_model,
)
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import IPAdapterData, TextConditioningData
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher
class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
"""A Stable Diffusion pipeline that uses Multi-Diffusion (https://arxiv.org/pdf/2302.08113) for denoising."""
# Plan:
# - latents_from_embeddings(...) will accept all of the same global params, but the "local" params will be bundled
# together with tile locations.
# - What is "local"?:
# - conditioning_data could be local, but for upscaling will be global
# - control_data makes more sense as global, then we split it up as we split up the latents
# - ip_adapter_data sort of has 3 modes to consider:
# - global style: applied in the same way to all tiles
# - local style: apply different IP-Adapters to each tile
# - global structure: we want to crop the input image and run the IP-Adapter on each separately
# - t2i_adapter_data won't be supported at first - it's not popular enough
# - All the inpainting params are global and need to be cropped accordingly
# - Local:
# - latents
# - conditioning_data
# - noise
# - control_data
# - ip_adapter_data (skip for now)
# - t2i_adapter_data (skip for now)
# - mask
# - masked_latents
# - is_gradient_mask ???
# - Can we support inpainting models in this node?
# - TBD, need to think about this more
# - step(...) remains mostly unmodified, is not overriden in this sub-class.
# - May need a cleaner AddsMaskGuidance implementation to handle this plan... we'll see.
def latents_from_embeddings(
self,
latents: torch.Tensor,
scheduler_step_kwargs: dict[str, Any],
conditioning_data: TextConditioningData,
noise: Optional[torch.Tensor],
seed: int,
timesteps: torch.Tensor,
init_timestep: torch.Tensor,
callback: Callable[[PipelineIntermediateState], None],
control_data: list[ControlNetData] | None = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None,
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
mask: Optional[torch.Tensor] = None,
masked_latents: Optional[torch.Tensor] = None,
is_gradient_mask: bool = False,
) -> torch.Tensor:
if ip_adapter_data is not None:
raise NotImplementedError("ip_adapter_data is not supported in MultiDiffusionPipeline")
if t2i_adapter_data is not None:
raise NotImplementedError("t2i_adapter_data is not supported in MultiDiffusionPipeline")
# TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle
# cases where densoisings_start and denoising_end are set such that there are no timesteps.
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
return latents
orig_latents = latents.clone()
batch_size = latents.shape[0]
batched_init_timestep = init_timestep.expand(batch_size)
# noise can be None if the latents have already been noised (e.g. when running the SDXL refiner).
if noise is not None:
# TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with
# full noise. Investigate the history of why this got commented out.
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
latents = self.scheduler.add_noise(latents, noise, batched_init_timestep)
self._adjust_memory_efficient_attention(latents)
# Handle mask guidance (a.k.a. inpainting).
mask_guidance: AddsMaskGuidance | None = None
if mask is not None and not is_inpainting_model(self.unet):
# We are doing inpainting, since a mask is provided, but we are not using an inpainting model, so we will
# apply mask guidance to the latents.
# 'noise' might be None if the latents have already been noised (e.g. when running the SDXL refiner).
# We still need noise for inpainting, so we generate it from the seed here.
if noise is None:
noise = torch.randn(
orig_latents.shape,
dtype=torch.float32,
device="cpu",
generator=torch.Generator(device="cpu").manual_seed(seed),
).to(device=orig_latents.device, dtype=orig_latents.dtype)
mask_guidance = AddsMaskGuidance(
mask=mask,
mask_latents=orig_latents,
scheduler=self.scheduler,
noise=noise,
is_gradient_mask=is_gradient_mask,
)
use_regional_prompting = (
conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None
)
unet_attention_patcher = None
attn_ctx = nullcontext()
if use_regional_prompting:
unet_attention_patcher = UNetAttentionPatcher(ip_adapter_data=None)
attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
with attn_ctx:
callback(
PipelineIntermediateState(
step=-1,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=self.scheduler.config.num_train_timesteps,
latents=latents,
)
)
for i, t in enumerate(self.progress_bar(timesteps)):
batched_t = t.expand(batch_size)
step_output = self.step(
t=batched_t,
latents=latents,
conditioning_data=conditioning_data,
step_index=i,
total_step_count=len(timesteps),
scheduler_step_kwargs=scheduler_step_kwargs,
mask_guidance=mask_guidance,
mask=mask,
masked_latents=masked_latents,
control_data=control_data,
)
latents = step_output.prev_sample
predicted_original = getattr(step_output, "pred_original_sample", None)
callback(
PipelineIntermediateState(
step=i,
order=self.scheduler.order,
total_steps=len(timesteps),
timestep=int(t),
latents=latents,
predicted_original=predicted_original,
)
)
# restore unmasked part after the last step is completed
# in-process masking happens before each step
if mask is not None:
if is_gradient_mask:
latents = torch.where(mask > 0, latents, orig_latents)
else:
latents = torch.lerp(
orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)
)
return latents