2024-06-05 17:53:53 +00:00
|
|
|
import torch
|
|
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
|
|
from diffusers.models.attention_processor import (
|
|
|
|
AttnProcessor2_0,
|
|
|
|
LoRAAttnProcessor2_0,
|
|
|
|
LoRAXFormersAttnProcessor,
|
|
|
|
XFormersAttnProcessor,
|
|
|
|
)
|
|
|
|
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
|
|
|
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
|
|
|
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
2024-06-07 15:41:39 +00:00
|
|
|
from PIL import Image
|
2024-06-05 17:53:53 +00:00
|
|
|
|
|
|
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
2024-06-06 13:16:45 +00:00
|
|
|
from invokeai.app.invocations.constants import DEFAULT_PRECISION
|
2024-06-05 17:53:53 +00:00
|
|
|
from invokeai.app.invocations.fields import (
|
|
|
|
FieldDescriptions,
|
|
|
|
Input,
|
|
|
|
InputField,
|
|
|
|
LatentsField,
|
|
|
|
WithBoard,
|
|
|
|
WithMetadata,
|
|
|
|
)
|
|
|
|
from invokeai.app.invocations.model import VAEField
|
|
|
|
from invokeai.app.invocations.primitives import ImageOutput
|
|
|
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
2024-06-07 15:41:39 +00:00
|
|
|
from invokeai.backend.model_manager.load.load_base import LoadedModel
|
2024-06-05 17:53:53 +00:00
|
|
|
from invokeai.backend.stable_diffusion import set_seamless
|
|
|
|
from invokeai.backend.util.devices import TorchDevice
|
|
|
|
|
|
|
|
|
|
|
|
@invocation(
|
|
|
|
"l2i",
|
|
|
|
title="Latents to Image",
|
|
|
|
tags=["latents", "image", "vae", "l2i"],
|
|
|
|
category="latents",
|
|
|
|
version="1.2.2",
|
|
|
|
)
|
|
|
|
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
|
|
"""Generates an image from latents."""
|
|
|
|
|
|
|
|
latents: LatentsField = InputField(
|
|
|
|
description=FieldDescriptions.latents,
|
|
|
|
input=Input.Connection,
|
|
|
|
)
|
|
|
|
vae: VAEField = InputField(
|
|
|
|
description=FieldDescriptions.vae,
|
|
|
|
input=Input.Connection,
|
|
|
|
)
|
|
|
|
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
|
2024-06-06 13:16:45 +00:00
|
|
|
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
|
2024-06-05 17:53:53 +00:00
|
|
|
|
2024-06-07 15:41:39 +00:00
|
|
|
@staticmethod
|
|
|
|
def vae_decode(
|
|
|
|
context: InvocationContext,
|
|
|
|
vae_info: LoadedModel,
|
|
|
|
seamless_axes: list[str],
|
|
|
|
latents: torch.Tensor,
|
|
|
|
use_fp32: bool,
|
|
|
|
use_tiling: bool,
|
|
|
|
) -> Image.Image:
|
2024-06-05 17:53:53 +00:00
|
|
|
assert isinstance(vae_info.model, (UNet2DConditionModel, AutoencoderKL, AutoencoderTiny))
|
2024-06-07 15:41:39 +00:00
|
|
|
with set_seamless(vae_info.model, seamless_axes), vae_info as vae:
|
2024-06-05 17:53:53 +00:00
|
|
|
assert isinstance(vae, torch.nn.Module)
|
|
|
|
latents = latents.to(vae.device)
|
2024-06-07 15:41:39 +00:00
|
|
|
if use_fp32:
|
2024-06-05 17:53:53 +00:00
|
|
|
vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
|
|
|
|
vae.decoder.mid_block.attentions[0].processor,
|
|
|
|
(
|
|
|
|
AttnProcessor2_0,
|
|
|
|
XFormersAttnProcessor,
|
|
|
|
LoRAXFormersAttnProcessor,
|
|
|
|
LoRAAttnProcessor2_0,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
# if xformers or torch_2_0 is used attention block does not need
|
|
|
|
# to be in float32 which can save lots of memory
|
|
|
|
if use_torch_2_0_or_xformers:
|
|
|
|
vae.post_quant_conv.to(latents.dtype)
|
|
|
|
vae.decoder.conv_in.to(latents.dtype)
|
|
|
|
vae.decoder.mid_block.to(latents.dtype)
|
|
|
|
else:
|
|
|
|
latents = latents.float()
|
|
|
|
|
|
|
|
else:
|
|
|
|
vae.to(dtype=torch.float16)
|
|
|
|
latents = latents.half()
|
|
|
|
|
2024-06-07 15:41:39 +00:00
|
|
|
if use_tiling or context.config.get().force_tiled_decode:
|
2024-06-05 17:53:53 +00:00
|
|
|
vae.enable_tiling()
|
|
|
|
else:
|
|
|
|
vae.disable_tiling()
|
|
|
|
|
|
|
|
# clear memory as vae decode can request a lot
|
|
|
|
TorchDevice.empty_cache()
|
|
|
|
|
|
|
|
with torch.inference_mode():
|
|
|
|
# copied from diffusers pipeline
|
|
|
|
latents = latents / vae.config.scaling_factor
|
|
|
|
image = vae.decode(latents, return_dict=False)[0]
|
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
|
|
|
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
|
|
|
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
|
|
|
|
|
|
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
|
|
|
|
|
|
|
|
TorchDevice.empty_cache()
|
|
|
|
|
2024-06-07 15:41:39 +00:00
|
|
|
return image
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
|
|
latents = context.tensors.load(self.latents.latents_name)
|
|
|
|
vae_info = context.models.load(self.vae.vae)
|
|
|
|
|
|
|
|
image = self.vae_decode(
|
|
|
|
context=context,
|
|
|
|
vae_info=vae_info,
|
|
|
|
seamless_axes=self.vae.seamless_axes,
|
|
|
|
latents=latents,
|
|
|
|
use_fp32=self.fp32,
|
|
|
|
use_tiling=self.tiled,
|
|
|
|
)
|
2024-06-05 17:53:53 +00:00
|
|
|
image_dto = context.images.save(image=image)
|
|
|
|
|
|
|
|
return ImageOutput.build(image_dto)
|