2024-04-08 08:11:00 +00:00
|
|
|
import numpy as np
|
2024-03-08 15:30:55 +00:00
|
|
|
import torch
|
2024-04-08 08:11:00 +00:00
|
|
|
from pydantic import BaseModel
|
2024-03-08 15:30:55 +00:00
|
|
|
|
|
|
|
from invokeai.app.invocations.baseinvocation import (
|
|
|
|
BaseInvocation,
|
2024-04-08 08:11:00 +00:00
|
|
|
BaseInvocationOutput,
|
2024-03-08 15:30:55 +00:00
|
|
|
InvocationContext,
|
|
|
|
invocation,
|
2024-04-08 08:11:00 +00:00
|
|
|
invocation_output,
|
2024-03-08 15:30:55 +00:00
|
|
|
)
|
2024-04-08 18:16:22 +00:00
|
|
|
from invokeai.app.invocations.fields import ColorField, ImageField, InputField, OutputField, TensorField, WithMetadata
|
2024-03-08 15:30:55 +00:00
|
|
|
from invokeai.app.invocations.primitives import MaskOutput
|
|
|
|
|
|
|
|
|
|
|
|
@invocation(
|
|
|
|
"rectangle_mask",
|
|
|
|
title="Create Rectangle Mask",
|
|
|
|
tags=["conditioning"],
|
|
|
|
category="conditioning",
|
|
|
|
version="1.0.0",
|
|
|
|
)
|
|
|
|
class RectangleMaskInvocation(BaseInvocation, WithMetadata):
|
|
|
|
"""Create a rectangular mask."""
|
|
|
|
|
|
|
|
height: int = InputField(description="The height of the entire mask.")
|
|
|
|
width: int = InputField(description="The width of the entire mask.")
|
|
|
|
y_top: int = InputField(description="The top y-coordinate of the rectangular masked region (inclusive).")
|
|
|
|
x_left: int = InputField(description="The left x-coordinate of the rectangular masked region (inclusive).")
|
|
|
|
rectangle_height: int = InputField(description="The height of the rectangular masked region.")
|
|
|
|
rectangle_width: int = InputField(description="The width of the rectangular masked region.")
|
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> MaskOutput:
|
|
|
|
mask = torch.zeros((1, self.height, self.width), dtype=torch.bool)
|
2024-03-11 13:45:25 +00:00
|
|
|
mask[:, self.y_top : self.y_top + self.rectangle_height, self.x_left : self.x_left + self.rectangle_width] = (
|
|
|
|
True
|
|
|
|
)
|
2024-03-08 15:30:55 +00:00
|
|
|
|
2024-04-08 18:16:22 +00:00
|
|
|
mask_tensor_name = context.tensors.save(mask)
|
2024-03-08 15:30:55 +00:00
|
|
|
return MaskOutput(
|
2024-04-08 18:16:22 +00:00
|
|
|
mask=TensorField(tensor_name=mask_tensor_name),
|
2024-03-08 15:30:55 +00:00
|
|
|
width=self.width,
|
|
|
|
height=self.height,
|
|
|
|
)
|
2024-04-08 08:11:00 +00:00
|
|
|
|
|
|
|
|
|
|
|
class PromptColorPair(BaseModel):
|
|
|
|
prompt: str
|
|
|
|
color: ColorField
|
|
|
|
|
|
|
|
|
|
|
|
class PromptMaskPair(BaseModel):
|
|
|
|
prompt: str
|
2024-04-08 18:16:22 +00:00
|
|
|
mask: TensorField
|
2024-04-08 08:11:00 +00:00
|
|
|
|
|
|
|
|
|
|
|
default_prompt_color_pairs = [
|
|
|
|
PromptColorPair(prompt="Strawberries", color=ColorField(r=200, g=0, b=0, a=255)),
|
|
|
|
PromptColorPair(prompt="Frog", color=ColorField(r=0, g=200, b=0, a=255)),
|
|
|
|
PromptColorPair(prompt="Banana", color=ColorField(r=0, g=0, b=200, a=255)),
|
|
|
|
PromptColorPair(prompt="A gnome", color=ColorField(r=215, g=0, b=255, a=255)),
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
@invocation_output("extract_masks_and_prompts_output")
|
|
|
|
class ExtractMasksAndPromptsOutput(BaseInvocationOutput):
|
|
|
|
prompt_mask_pairs: list[PromptMaskPair] = OutputField(description="List of prompts and their corresponding masks.")
|
|
|
|
|
|
|
|
|
|
|
|
@invocation(
|
|
|
|
"extract_masks_and_prompts",
|
|
|
|
title="Extract Masks and Prompts",
|
|
|
|
tags=["conditioning"],
|
|
|
|
category="conditioning",
|
|
|
|
version="1.0.0",
|
|
|
|
)
|
|
|
|
class ExtractMasksAndPromptsInvocation(BaseInvocation):
|
|
|
|
"""Extract masks and prompts from a segmented mask image and prompt-to-color map."""
|
|
|
|
|
|
|
|
prompt_color_pairs: list[PromptColorPair] = InputField(
|
|
|
|
default=default_prompt_color_pairs, description="List of prompts and their corresponding colors."
|
|
|
|
)
|
|
|
|
image: ImageField = InputField(description="Mask to apply to the prompts.")
|
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> ExtractMasksAndPromptsOutput:
|
|
|
|
prompt_mask_pairs: list[PromptMaskPair] = []
|
|
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
image_as_tensor = torch.from_numpy(np.array(image, dtype=np.uint8))
|
|
|
|
|
|
|
|
for pair in self.prompt_color_pairs:
|
2024-04-08 16:27:57 +00:00
|
|
|
# TODO(ryand): Make this work for both RGB and RGBA images.
|
2024-04-08 08:11:00 +00:00
|
|
|
mask = torch.all(image_as_tensor == torch.tensor(pair.color.tuple()), dim=-1)
|
2024-04-08 16:27:57 +00:00
|
|
|
# Add explicit channel dimension.
|
|
|
|
mask = mask.unsqueeze(0)
|
2024-04-08 18:16:22 +00:00
|
|
|
mask_tensor_name = context.tensors.save(mask)
|
|
|
|
prompt_mask_pairs.append(PromptMaskPair(prompt=pair.prompt, mask=TensorField(tensor_name=mask_tensor_name)))
|
2024-04-08 08:11:00 +00:00
|
|
|
return ExtractMasksAndPromptsOutput(prompt_mask_pairs=prompt_mask_pairs)
|
|
|
|
|
|
|
|
|
|
|
|
@invocation_output("split_mask_prompt_pair_output")
|
|
|
|
class SplitMaskPromptPairOutput(BaseInvocationOutput):
|
|
|
|
prompt: str = OutputField()
|
2024-04-08 18:16:22 +00:00
|
|
|
mask: TensorField = OutputField()
|
2024-04-08 08:11:00 +00:00
|
|
|
|
|
|
|
|
|
|
|
@invocation(
|
|
|
|
"split_mask_prompt_pair",
|
|
|
|
title="Split Mask-Prompt pair",
|
|
|
|
tags=["conditioning"],
|
|
|
|
category="conditioning",
|
|
|
|
version="1.0.0",
|
|
|
|
)
|
|
|
|
class SplitMaskPromptPair(BaseInvocation):
|
|
|
|
"""Extract masks and prompts from a segmented mask image and prompt-to-color map."""
|
|
|
|
|
|
|
|
prompt_mask_pair: PromptMaskPair = InputField()
|
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> SplitMaskPromptPairOutput:
|
|
|
|
return SplitMaskPromptPairOutput(mask=self.prompt_mask_pair.mask, prompt=self.prompt_mask_pair.prompt)
|