2024-03-21 08:55:51 +00:00
|
|
|
"""Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license)."""
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from einops import rearrange
|
|
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
from invokeai.backend.image_util.util import (
|
|
|
|
normalize_image_channel_count,
|
|
|
|
np_to_pil,
|
|
|
|
pil_to_np,
|
2024-03-21 12:00:29 +00:00
|
|
|
resize_image_to_resolution,
|
2024-03-21 08:55:51 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
|
|
def __init__(self, in_features):
|
|
|
|
super(ResidualBlock, self).__init__()
|
|
|
|
|
|
|
|
conv_block = [
|
|
|
|
nn.ReflectionPad2d(1),
|
|
|
|
nn.Conv2d(in_features, in_features, 3),
|
|
|
|
nn.InstanceNorm2d(in_features),
|
|
|
|
nn.ReLU(inplace=True),
|
|
|
|
nn.ReflectionPad2d(1),
|
|
|
|
nn.Conv2d(in_features, in_features, 3),
|
|
|
|
nn.InstanceNorm2d(in_features),
|
|
|
|
]
|
|
|
|
|
|
|
|
self.conv_block = nn.Sequential(*conv_block)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return x + self.conv_block(x)
|
|
|
|
|
|
|
|
|
|
|
|
class Generator(nn.Module):
|
|
|
|
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
|
|
|
|
super(Generator, self).__init__()
|
|
|
|
|
|
|
|
# Initial convolution block
|
|
|
|
model0 = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), nn.InstanceNorm2d(64), nn.ReLU(inplace=True)]
|
|
|
|
self.model0 = nn.Sequential(*model0)
|
|
|
|
|
|
|
|
# Downsampling
|
|
|
|
model1 = []
|
|
|
|
in_features = 64
|
|
|
|
out_features = in_features * 2
|
|
|
|
for _ in range(2):
|
|
|
|
model1 += [
|
|
|
|
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
|
|
|
|
nn.InstanceNorm2d(out_features),
|
|
|
|
nn.ReLU(inplace=True),
|
|
|
|
]
|
|
|
|
in_features = out_features
|
|
|
|
out_features = in_features * 2
|
|
|
|
self.model1 = nn.Sequential(*model1)
|
|
|
|
|
|
|
|
model2 = []
|
|
|
|
# Residual blocks
|
|
|
|
for _ in range(n_residual_blocks):
|
|
|
|
model2 += [ResidualBlock(in_features)]
|
|
|
|
self.model2 = nn.Sequential(*model2)
|
|
|
|
|
|
|
|
# Upsampling
|
|
|
|
model3 = []
|
|
|
|
out_features = in_features // 2
|
|
|
|
for _ in range(2):
|
|
|
|
model3 += [
|
|
|
|
nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
|
|
|
|
nn.InstanceNorm2d(out_features),
|
|
|
|
nn.ReLU(inplace=True),
|
|
|
|
]
|
|
|
|
in_features = out_features
|
|
|
|
out_features = in_features // 2
|
|
|
|
self.model3 = nn.Sequential(*model3)
|
|
|
|
|
|
|
|
# Output layer
|
|
|
|
model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)]
|
|
|
|
if sigmoid:
|
|
|
|
model4 += [nn.Sigmoid()]
|
|
|
|
|
|
|
|
self.model4 = nn.Sequential(*model4)
|
|
|
|
|
|
|
|
def forward(self, x, cond=None):
|
|
|
|
out = self.model0(x)
|
|
|
|
out = self.model1(out)
|
|
|
|
out = self.model2(out)
|
|
|
|
out = self.model3(out)
|
|
|
|
out = self.model4(out)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class LineartProcessor:
|
|
|
|
"""Processor for lineart detection."""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
model_path = hf_hub_download("lllyasviel/Annotators", "sk_model.pth")
|
|
|
|
self.model = Generator(3, 1, 3)
|
|
|
|
self.model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
|
|
|
|
self.model.eval()
|
|
|
|
|
|
|
|
coarse_model_path = hf_hub_download("lllyasviel/Annotators", "sk_model2.pth")
|
|
|
|
self.model_coarse = Generator(3, 1, 3)
|
|
|
|
self.model_coarse.load_state_dict(torch.load(coarse_model_path, map_location=torch.device("cpu")))
|
|
|
|
self.model_coarse.eval()
|
|
|
|
|
|
|
|
def to(self, device: torch.device):
|
|
|
|
self.model.to(device)
|
|
|
|
self.model_coarse.to(device)
|
|
|
|
return self
|
|
|
|
|
|
|
|
def run(
|
|
|
|
self, input_image: Image.Image, coarse: bool = False, detect_resolution: int = 512, image_resolution: int = 512
|
|
|
|
) -> Image.Image:
|
|
|
|
"""Processes an image to detect lineart.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_image: The input image.
|
|
|
|
coarse: Whether to use the coarse model.
|
|
|
|
detect_resolution: The resolution to fit the image to before edge detection.
|
|
|
|
image_resolution: The resolution of the output image.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The detected lineart.
|
|
|
|
"""
|
|
|
|
device = next(iter(self.model.parameters())).device
|
|
|
|
|
|
|
|
np_image = pil_to_np(input_image)
|
|
|
|
np_image = normalize_image_channel_count(np_image)
|
2024-03-21 12:00:29 +00:00
|
|
|
np_image = resize_image_to_resolution(np_image, detect_resolution)
|
2024-03-21 08:55:51 +00:00
|
|
|
|
|
|
|
model = self.model_coarse if coarse else self.model
|
|
|
|
assert np_image.ndim == 3
|
|
|
|
image = np_image
|
|
|
|
with torch.no_grad():
|
|
|
|
image = torch.from_numpy(image).float().to(device)
|
|
|
|
image = image / 255.0
|
|
|
|
image = rearrange(image, "h w c -> 1 c h w")
|
|
|
|
line = model(image)[0][0]
|
|
|
|
|
|
|
|
line = line.cpu().numpy()
|
|
|
|
line = (line * 255.0).clip(0, 255).astype(np.uint8)
|
|
|
|
|
|
|
|
detected_map = line
|
|
|
|
|
|
|
|
detected_map = normalize_image_channel_count(detected_map)
|
|
|
|
|
2024-03-21 12:00:29 +00:00
|
|
|
img = resize_image_to_resolution(np_image, image_resolution)
|
2024-03-21 08:55:51 +00:00
|
|
|
H, W, C = img.shape
|
|
|
|
|
|
|
|
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
|
|
|
detected_map = 255 - detected_map
|
|
|
|
|
|
|
|
return np_to_pil(detected_map)
|