mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
tidy: "fit_image_to_resolution" -> "resize_image_to_resolution"
This commit is contained in:
parent
64fb15e117
commit
a6283b9fb6
@ -3,9 +3,9 @@ from PIL import Image
|
||||
|
||||
from invokeai.backend.image_util.util import (
|
||||
cv2_to_pil,
|
||||
fit_image_to_resolution,
|
||||
normalize_image_channel_count,
|
||||
pil_to_cv2,
|
||||
resize_image_to_resolution,
|
||||
)
|
||||
|
||||
|
||||
@ -32,10 +32,10 @@ def get_canny_edges(
|
||||
|
||||
np_image = pil_to_cv2(image)
|
||||
np_image = normalize_image_channel_count(np_image)
|
||||
np_image = fit_image_to_resolution(np_image, detect_resolution)
|
||||
np_image = resize_image_to_resolution(np_image, detect_resolution)
|
||||
|
||||
edge_map = cv2.Canny(np_image, low_threshold, high_threshold)
|
||||
edge_map = normalize_image_channel_count(edge_map)
|
||||
edge_map = fit_image_to_resolution(edge_map, image_resolution)
|
||||
edge_map = resize_image_to_resolution(edge_map, image_resolution)
|
||||
|
||||
return cv2_to_pil(edge_map)
|
||||
|
@ -8,11 +8,11 @@ from huggingface_hub import hf_hub_download
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.backend.image_util.util import (
|
||||
fit_image_to_resolution,
|
||||
non_maximum_suppression,
|
||||
normalize_image_channel_count,
|
||||
np_to_pil,
|
||||
pil_to_np,
|
||||
resize_image_to_resolution,
|
||||
safe_step,
|
||||
)
|
||||
|
||||
@ -109,7 +109,7 @@ class HEDProcessor:
|
||||
device = next(iter(self.network.parameters())).device
|
||||
np_image = pil_to_np(input_image)
|
||||
np_image = normalize_image_channel_count(np_image)
|
||||
np_image = fit_image_to_resolution(np_image, detect_resolution)
|
||||
np_image = resize_image_to_resolution(np_image, detect_resolution)
|
||||
|
||||
assert np_image.ndim == 3
|
||||
height, width, _channels = np_image.shape
|
||||
@ -128,7 +128,7 @@ class HEDProcessor:
|
||||
detected_map = edge
|
||||
detected_map = normalize_image_channel_count(detected_map)
|
||||
|
||||
img = fit_image_to_resolution(np_image, image_resolution)
|
||||
img = resize_image_to_resolution(np_image, image_resolution)
|
||||
height, width, _channels = img.shape
|
||||
|
||||
detected_map = cv2.resize(detected_map, (width, height), interpolation=cv2.INTER_LINEAR)
|
||||
|
@ -9,10 +9,10 @@ from huggingface_hub import hf_hub_download
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.backend.image_util.util import (
|
||||
fit_image_to_resolution,
|
||||
normalize_image_channel_count,
|
||||
np_to_pil,
|
||||
pil_to_np,
|
||||
resize_image_to_resolution,
|
||||
)
|
||||
|
||||
|
||||
@ -131,7 +131,7 @@ class LineartProcessor:
|
||||
|
||||
np_image = pil_to_np(input_image)
|
||||
np_image = normalize_image_channel_count(np_image)
|
||||
np_image = fit_image_to_resolution(np_image, detect_resolution)
|
||||
np_image = resize_image_to_resolution(np_image, detect_resolution)
|
||||
|
||||
model = self.model_coarse if coarse else self.model
|
||||
assert np_image.ndim == 3
|
||||
@ -149,7 +149,7 @@ class LineartProcessor:
|
||||
|
||||
detected_map = normalize_image_channel_count(detected_map)
|
||||
|
||||
img = fit_image_to_resolution(np_image, image_resolution)
|
||||
img = resize_image_to_resolution(np_image, image_resolution)
|
||||
H, W, C = img.shape
|
||||
|
||||
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
||||
|
@ -12,10 +12,10 @@ from huggingface_hub import hf_hub_download
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.backend.image_util.util import (
|
||||
fit_image_to_resolution,
|
||||
normalize_image_channel_count,
|
||||
np_to_pil,
|
||||
pil_to_np,
|
||||
resize_image_to_resolution,
|
||||
)
|
||||
|
||||
|
||||
@ -173,7 +173,7 @@ class LineartAnimeProcessor:
|
||||
np_image = pil_to_np(input_image)
|
||||
|
||||
np_image = normalize_image_channel_count(np_image)
|
||||
np_image = fit_image_to_resolution(np_image, detect_resolution)
|
||||
np_image = resize_image_to_resolution(np_image, detect_resolution)
|
||||
|
||||
H, W, C = np_image.shape
|
||||
Hn = 256 * int(np.ceil(float(H) / 256.0))
|
||||
@ -194,7 +194,7 @@ class LineartAnimeProcessor:
|
||||
|
||||
detected_map = normalize_image_channel_count(detected_map)
|
||||
|
||||
img = fit_image_to_resolution(np_image, image_resolution)
|
||||
img = resize_image_to_resolution(np_image, image_resolution)
|
||||
H, W, C = img.shape
|
||||
|
||||
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
||||
|
@ -128,7 +128,7 @@ def normalize_image_channel_count(image: np.ndarray) -> np.ndarray:
|
||||
raise ValueError("Invalid number of channels.")
|
||||
|
||||
|
||||
def fit_image_to_resolution(input_image: np.ndarray, resolution: int) -> np.ndarray:
|
||||
def resize_image_to_resolution(input_image: np.ndarray, resolution: int) -> np.ndarray:
|
||||
"""Resizes an image, fitting it to the given resolution.
|
||||
|
||||
Adapted from https://github.com/huggingface/controlnet_aux (Apache-2.0 license).
|
||||
|
Loading…
Reference in New Issue
Block a user