2023-06-27 03:57:31 +00:00
|
|
|
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
|
|
|
|
|
|
|
|
|
2023-09-25 01:44:12 +00:00
|
|
|
import numpy as np
|
2023-06-27 03:57:31 +00:00
|
|
|
import torch
|
2023-08-14 03:23:09 +00:00
|
|
|
from pydantic import validator
|
2023-06-27 03:57:31 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
from invokeai.app.invocations.latent import LatentsField
|
2023-06-27 03:57:31 +00:00
|
|
|
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
2023-08-14 03:23:09 +00:00
|
|
|
|
2023-06-27 03:57:31 +00:00
|
|
|
from ...backend.util.devices import choose_torch_device, torch_dtype
|
|
|
|
from .baseinvocation import (
|
|
|
|
BaseInvocation,
|
|
|
|
BaseInvocationOutput,
|
2023-08-14 03:23:09 +00:00
|
|
|
FieldDescriptions,
|
2023-09-25 01:44:12 +00:00
|
|
|
Input,
|
2023-08-14 03:23:09 +00:00
|
|
|
InputField,
|
2023-06-27 03:57:31 +00:00
|
|
|
InvocationContext,
|
2023-08-14 03:23:09 +00:00
|
|
|
OutputField,
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
invocation,
|
|
|
|
invocation_output,
|
2023-06-27 03:57:31 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
"""
|
|
|
|
Utilities
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def get_noise(
|
|
|
|
width: int,
|
|
|
|
height: int,
|
|
|
|
device: torch.device,
|
|
|
|
seed: int = 0,
|
|
|
|
latent_channels: int = 4,
|
|
|
|
downsampling_factor: int = 8,
|
|
|
|
use_cpu: bool = True,
|
|
|
|
perlin: float = 0.0,
|
|
|
|
):
|
|
|
|
"""Generate noise for a given image size."""
|
2023-07-04 22:05:01 +00:00
|
|
|
noise_device_type = "cpu" if use_cpu else device.type
|
2023-06-27 03:57:31 +00:00
|
|
|
|
|
|
|
# limit noise to only the diffusion image channels, not the mask channels
|
|
|
|
input_channels = min(latent_channels, 4)
|
|
|
|
generator = torch.Generator(device=noise_device_type).manual_seed(seed)
|
|
|
|
|
|
|
|
noise_tensor = torch.randn(
|
|
|
|
[
|
|
|
|
1,
|
|
|
|
input_channels,
|
|
|
|
height // downsampling_factor,
|
|
|
|
width // downsampling_factor,
|
|
|
|
],
|
|
|
|
dtype=torch_dtype(device),
|
|
|
|
device=noise_device_type,
|
|
|
|
generator=generator,
|
2023-07-18 13:20:25 +00:00
|
|
|
).to("cpu")
|
2023-06-27 03:57:31 +00:00
|
|
|
|
|
|
|
return noise_tensor
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
Nodes
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation_output("noise_output")
|
2023-06-27 03:57:31 +00:00
|
|
|
class NoiseOutput(BaseInvocationOutput):
|
2023-09-25 01:44:12 +00:00
|
|
|
"""Invocation noise output."""
|
2023-06-27 03:57:31 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
noise: LatentsField = OutputField(default=None, description=FieldDescriptions.noise)
|
|
|
|
width: int = OutputField(description=FieldDescriptions.width)
|
|
|
|
height: int = OutputField(description=FieldDescriptions.height)
|
2023-06-27 03:57:31 +00:00
|
|
|
|
|
|
|
|
2023-08-08 01:00:33 +00:00
|
|
|
def build_noise_output(latents_name: str, latents: torch.Tensor, seed: int):
|
2023-06-27 03:57:31 +00:00
|
|
|
return NoiseOutput(
|
2023-08-08 01:00:33 +00:00
|
|
|
noise=LatentsField(latents_name=latents_name, seed=seed),
|
2023-06-27 03:57:31 +00:00
|
|
|
width=latents.size()[3] * 8,
|
|
|
|
height=latents.size()[2] * 8,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2023-09-04 08:11:56 +00:00
|
|
|
@invocation("noise", title="Noise", tags=["latents", "noise"], category="latents", version="1.0.0")
|
2023-06-27 03:57:31 +00:00
|
|
|
class NoiseInvocation(BaseInvocation):
|
|
|
|
"""Generates latent noise."""
|
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
seed: int = InputField(
|
2023-06-27 03:57:31 +00:00
|
|
|
ge=0,
|
|
|
|
le=SEED_MAX,
|
2023-08-14 03:23:09 +00:00
|
|
|
description=FieldDescriptions.seed,
|
2023-06-27 03:57:31 +00:00
|
|
|
default_factory=get_random_seed,
|
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
width: int = InputField(
|
2023-06-27 03:57:31 +00:00
|
|
|
default=512,
|
|
|
|
multiple_of=8,
|
|
|
|
gt=0,
|
2023-08-14 03:23:09 +00:00
|
|
|
description=FieldDescriptions.width,
|
2023-06-27 03:57:31 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
height: int = InputField(
|
2023-06-27 03:57:31 +00:00
|
|
|
default=512,
|
|
|
|
multiple_of=8,
|
|
|
|
gt=0,
|
2023-08-14 03:23:09 +00:00
|
|
|
description=FieldDescriptions.height,
|
2023-06-27 03:57:31 +00:00
|
|
|
)
|
2023-08-14 03:23:09 +00:00
|
|
|
use_cpu: bool = InputField(
|
2023-06-27 03:57:31 +00:00
|
|
|
default=True,
|
|
|
|
description="Use CPU for noise generation (for reproducible results across platforms)",
|
|
|
|
)
|
|
|
|
|
|
|
|
@validator("seed", pre=True)
|
|
|
|
def modulo_seed(cls, v):
|
2023-07-24 06:44:32 +00:00
|
|
|
"""Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""
|
|
|
|
return v % (SEED_MAX + 1)
|
2023-06-27 03:57:31 +00:00
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> NoiseOutput:
|
|
|
|
noise = get_noise(
|
|
|
|
width=self.width,
|
|
|
|
height=self.height,
|
|
|
|
device=choose_torch_device(),
|
|
|
|
seed=self.seed,
|
|
|
|
use_cpu=self.use_cpu,
|
|
|
|
)
|
|
|
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
|
|
|
context.services.latents.save(name, noise)
|
2023-08-08 01:00:33 +00:00
|
|
|
return build_noise_output(latents_name=name, latents=noise, seed=self.seed)
|
2023-09-25 01:44:12 +00:00
|
|
|
|
|
|
|
|
|
|
|
@invocation(
|
|
|
|
"blend_noise", title="Blend Noise", tags=["latents", "noise", "variations"], category="latents", version="1.0.0"
|
|
|
|
)
|
|
|
|
class BlendNoiseInvocation(BaseInvocation):
|
|
|
|
"""Blend two noise tensors according to a proportion. Useful for generating variations."""
|
|
|
|
|
|
|
|
noise_A: LatentsField = InputField(description=FieldDescriptions.noise, input=Input.Connection, ui_order=0)
|
|
|
|
noise_B: LatentsField = InputField(description=FieldDescriptions.noise, input=Input.Connection, ui_order=1)
|
|
|
|
blend_ratio: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.blend_alpha)
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def invoke(self, context: InvocationContext) -> NoiseOutput:
|
|
|
|
"""Combine two noise vectors, returning a blend that can be used to generate variations."""
|
|
|
|
noise_a = context.services.latents.get(self.noise_A.latents_name)
|
|
|
|
noise_b = context.services.latents.get(self.noise_B.latents_name)
|
|
|
|
|
|
|
|
if noise_a is None or noise_b is None:
|
|
|
|
raise Exception("Both noise_A and noise_B must be provided.")
|
|
|
|
if noise_a.shape != noise_b.shape:
|
|
|
|
raise Exception("Both noise_A and noise_B must be same dimensions.")
|
|
|
|
|
|
|
|
seed = self.noise_A.seed
|
|
|
|
alpha = self.blend_ratio
|
|
|
|
merged_noise = self.slerp(alpha, noise_a, noise_b)
|
|
|
|
|
|
|
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
|
|
|
context.services.latents.save(name, merged_noise)
|
|
|
|
return build_noise_output(latents_name=name, latents=merged_noise, seed=seed)
|
|
|
|
|
|
|
|
def slerp(self, t: float, v0: torch.tensor, v1: torch.tensor, DOT_THRESHOLD: float = 0.9995):
|
|
|
|
"""
|
|
|
|
Spherical linear interpolation.
|
|
|
|
|
|
|
|
:param t: Mixing value, float between 0.0 and 1.0.
|
|
|
|
:param v0: Source noise
|
|
|
|
:param v1: Target noise
|
|
|
|
:DOT_THRESHOLD: Threshold for considering two vectors colineal. Don't change.
|
|
|
|
|
|
|
|
:Returns: Interpolation vector between v0 and v1
|
|
|
|
"""
|
|
|
|
device = v0.device or choose_torch_device()
|
|
|
|
v0 = v0.detach().cpu().numpy()
|
|
|
|
v1 = v1.detach().cpu().numpy()
|
|
|
|
|
|
|
|
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
|
|
|
if np.abs(dot) > DOT_THRESHOLD:
|
|
|
|
v2 = (1 - t) * v0 + t * v1
|
|
|
|
else:
|
|
|
|
theta_0 = np.arccos(dot)
|
|
|
|
sin_theta_0 = np.sin(theta_0)
|
|
|
|
theta_t = theta_0 * t
|
|
|
|
sin_theta_t = np.sin(theta_t)
|
|
|
|
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
|
|
|
s1 = sin_theta_t / sin_theta_0
|
|
|
|
v2 = s0 * v0 + s1 * v1
|
|
|
|
|
|
|
|
return torch.from_numpy(v2).to(device)
|