InvokeAI/invokeai/app/invocations/noise.py
2023-09-24 21:44:12 -04:00

185 lines
5.9 KiB
Python

# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) & the InvokeAI Team
import numpy as np
import torch
from pydantic import validator
from invokeai.app.invocations.latent import LatentsField
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from ...backend.util.devices import choose_torch_device, torch_dtype
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
OutputField,
invocation,
invocation_output,
)
"""
Utilities
"""
def get_noise(
width: int,
height: int,
device: torch.device,
seed: int = 0,
latent_channels: int = 4,
downsampling_factor: int = 8,
use_cpu: bool = True,
perlin: float = 0.0,
):
"""Generate noise for a given image size."""
noise_device_type = "cpu" if use_cpu else device.type
# limit noise to only the diffusion image channels, not the mask channels
input_channels = min(latent_channels, 4)
generator = torch.Generator(device=noise_device_type).manual_seed(seed)
noise_tensor = torch.randn(
[
1,
input_channels,
height // downsampling_factor,
width // downsampling_factor,
],
dtype=torch_dtype(device),
device=noise_device_type,
generator=generator,
).to("cpu")
return noise_tensor
"""
Nodes
"""
@invocation_output("noise_output")
class NoiseOutput(BaseInvocationOutput):
"""Invocation noise output."""
noise: LatentsField = OutputField(default=None, description=FieldDescriptions.noise)
width: int = OutputField(description=FieldDescriptions.width)
height: int = OutputField(description=FieldDescriptions.height)
def build_noise_output(latents_name: str, latents: torch.Tensor, seed: int):
return NoiseOutput(
noise=LatentsField(latents_name=latents_name, seed=seed),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
@invocation("noise", title="Noise", tags=["latents", "noise"], category="latents", version="1.0.0")
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
seed: int = InputField(
ge=0,
le=SEED_MAX,
description=FieldDescriptions.seed,
default_factory=get_random_seed,
)
width: int = InputField(
default=512,
multiple_of=8,
gt=0,
description=FieldDescriptions.width,
)
height: int = InputField(
default=512,
multiple_of=8,
gt=0,
description=FieldDescriptions.height,
)
use_cpu: bool = InputField(
default=True,
description="Use CPU for noise generation (for reproducible results across platforms)",
)
@validator("seed", pre=True)
def modulo_seed(cls, v):
"""Returns the seed modulo (SEED_MAX + 1) to ensure it is within the valid range."""
return v % (SEED_MAX + 1)
def invoke(self, context: InvocationContext) -> NoiseOutput:
noise = get_noise(
width=self.width,
height=self.height,
device=choose_torch_device(),
seed=self.seed,
use_cpu=self.use_cpu,
)
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, noise)
return build_noise_output(latents_name=name, latents=noise, seed=self.seed)
@invocation(
"blend_noise", title="Blend Noise", tags=["latents", "noise", "variations"], category="latents", version="1.0.0"
)
class BlendNoiseInvocation(BaseInvocation):
"""Blend two noise tensors according to a proportion. Useful for generating variations."""
noise_A: LatentsField = InputField(description=FieldDescriptions.noise, input=Input.Connection, ui_order=0)
noise_B: LatentsField = InputField(description=FieldDescriptions.noise, input=Input.Connection, ui_order=1)
blend_ratio: float = InputField(default=0.0, ge=0, le=1, description=FieldDescriptions.blend_alpha)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> NoiseOutput:
"""Combine two noise vectors, returning a blend that can be used to generate variations."""
noise_a = context.services.latents.get(self.noise_A.latents_name)
noise_b = context.services.latents.get(self.noise_B.latents_name)
if noise_a is None or noise_b is None:
raise Exception("Both noise_A and noise_B must be provided.")
if noise_a.shape != noise_b.shape:
raise Exception("Both noise_A and noise_B must be same dimensions.")
seed = self.noise_A.seed
alpha = self.blend_ratio
merged_noise = self.slerp(alpha, noise_a, noise_b)
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, merged_noise)
return build_noise_output(latents_name=name, latents=merged_noise, seed=seed)
def slerp(self, t: float, v0: torch.tensor, v1: torch.tensor, DOT_THRESHOLD: float = 0.9995):
"""
Spherical linear interpolation.
:param t: Mixing value, float between 0.0 and 1.0.
:param v0: Source noise
:param v1: Target noise
:DOT_THRESHOLD: Threshold for considering two vectors colineal. Don't change.
:Returns: Interpolation vector between v0 and v1
"""
device = v0.device or choose_torch_device()
v0 = v0.detach().cpu().numpy()
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
return torch.from_numpy(v2).to(device)