InvokeAI/tests/test_model_cache.py

91 lines
4.1 KiB
Python
Raw Normal View History

2023-05-02 02:57:30 +00:00
import pytest
import torch
from enum import Enum
from invokeai.backend.model_management.model_cache import ModelCache, MODEL_CLASSES
2023-05-02 02:57:30 +00:00
class DummyModelBase(object):
'''Base class for dummy component of a diffusers model'''
def __init__(self, repo_id):
self.repo_id = repo_id
self.device = torch.device('cpu')
2023-05-02 02:57:30 +00:00
@classmethod
def from_pretrained(cls,
repo_id:str,
revision:str=None,
subfolder:str=None,
cache_dir:str=None,
):
return cls(repo_id)
def to(self, device):
self.device = device
2023-05-02 02:57:30 +00:00
class DummyModelType1(DummyModelBase):
pass
class DummyModelType2(DummyModelBase):
pass
class DummyPipeline(DummyModelBase):
'''Dummy pipeline object is a composite of several types'''
def __init__(self,repo_id):
super().__init__(repo_id)
self.dummy_model_type1 = DummyModelType1('dummy/type1')
self.dummy_model_type2 = DummyModelType2('dummy/type2')
class DMType(str, Enum):
dummy_pipeline = 'dummy_pipeline'
type1 = 'dummy_model_type1'
type2 = 'dummy_model_type2'
MODEL_CLASSES.update(
{
DMType.dummy_pipeline: DummyPipeline,
DMType.type1: DummyModelType1,
DMType.type2: DummyModelType2,
}
)
cache = ModelCache(max_cache_size=4)
2023-05-02 02:57:30 +00:00
def test_pipeline_fetch():
assert cache.cache_size()==0
with cache.get_model('dummy/pipeline1',DMType.dummy_pipeline) as pipeline1,\
cache.get_model('dummy/pipeline1',DMType.dummy_pipeline) as pipeline1a,\
cache.get_model('dummy/pipeline2',DMType.dummy_pipeline) as pipeline2:
assert pipeline1 is not None, 'get_model() should not return None'
assert pipeline1a is not None, 'get_model() should not return None'
assert pipeline2 is not None, 'get_model() should not return None'
assert type(pipeline1)==DummyPipeline,'get_model() did not return model of expected type'
assert pipeline1==pipeline1a,'pipelines with the same repo_id should be the same'
assert pipeline1!=pipeline2,'pipelines with different repo_ids should not be the same'
assert len(cache.models)==2,'cache should uniquely cache models with same identity'
with cache.get_model('dummy/pipeline3',DMType.dummy_pipeline) as pipeline3,\
cache.get_model('dummy/pipeline4',DMType.dummy_pipeline) as pipeline4:
assert len(cache.models)==4,'cache did not grow as expected'
def test_signatures():
with cache.get_model('dummy/pipeline',DMType.dummy_pipeline,revision='main') as pipeline1,\
cache.get_model('dummy/pipeline',DMType.dummy_pipeline,revision='fp16') as pipeline2,\
cache.get_model('dummy/pipeline',DMType.dummy_pipeline,revision='main',subfolder='foo') as pipeline3:
assert pipeline1 != pipeline2,'models are distinguished by their revision'
assert pipeline1 != pipeline3,'models are distinguished by their subfolder'
def test_pipeline_device():
with cache.get_model('dummy/pipeline1',DMType.type1) as model1:
assert model1.device==torch.device('cuda'),'when in context, model device should be in GPU'
with cache.get_model('dummy/pipeline1',DMType.type1, gpu_load=False) as model1:
assert model1.device==torch.device('cpu'),'when gpu_load=False, model device should be CPU'
2023-05-02 02:57:30 +00:00
def test_submodel_fetch():
with cache.get_model(repo_id_or_path='dummy/pipeline1',model_type=DMType.dummy_pipeline) as pipeline,\
cache.get_model(repo_id_or_path='dummy/pipeline1',model_type=DMType.dummy_pipeline,submodel=DMType.type1) as part1,\
cache.get_model(repo_id_or_path='dummy/pipeline2',model_type=DMType.dummy_pipeline,submodel=DMType.type1) as part2:
assert type(part1)==DummyModelType1,'returned submodel is not of expected type'
assert part1.device==torch.device('cuda'),'returned submodel should be in the GPU when in context'
assert pipeline.dummy_model_type1==part1,'returned submodel should match the corresponding subpart of parent model'
assert pipeline.dummy_model_type1!=part2,'returned submodel should not match the subpart of a different parent'