InvokeAI/invokeai/app/invocations/sdxl.py

98 lines
4.3 KiB
Python
Raw Normal View History

from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_manager import SubModelType
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from .model import CLIPField, ModelField, UNetField, VAEField
2023-07-27 14:54:01 +00:00
@invocation_output("sdxl_model_loader_output")
class SDXLModelLoaderOutput(BaseInvocationOutput):
"""SDXL base model loader output"""
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
clip: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP 1")
clip2: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
2023-07-27 14:54:01 +00:00
@invocation_output("sdxl_refiner_model_loader_output")
2023-07-16 16:36:38 +00:00
class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
"""SDXL refiner model loader output"""
2023-07-27 14:54:01 +00:00
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
clip2: CLIPField = OutputField(description=FieldDescriptions.clip, title="CLIP 2")
vae: VAEField = OutputField(description=FieldDescriptions.vae, title="VAE")
2023-07-27 14:54:01 +00:00
@invocation("sdxl_model_loader", title="SDXL Main Model", tags=["model", "sdxl"], category="model", version="1.0.1")
class SDXLModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl base model, outputting its submodels."""
model: ModelField = InputField(
description=FieldDescriptions.sdxl_main_model, input=Input.Direct, ui_type=UIType.SDXLMainModel
)
# TODO: precision?
def invoke(self, context: InvocationContext) -> SDXLModelLoaderOutput:
model_key = self.model.key
# TODO: not found exceptions
if not context.models.exists(model_key):
raise Exception(f"Unknown model: {model_key}")
unet = self.model.model_copy(update={"submodel_type": SubModelType.UNet})
scheduler = self.model.model_copy(update={"submodel_type": SubModelType.Scheduler})
tokenizer = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer})
text_encoder = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder})
tokenizer2 = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
text_encoder2 = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
2023-07-16 16:36:38 +00:00
return SDXLModelLoaderOutput(
unet=UNetField(unet=unet, scheduler=scheduler, loras=[]),
clip=CLIPField(tokenizer=tokenizer, text_encoder=text_encoder, loras=[], skipped_layers=0),
clip2=CLIPField(tokenizer=tokenizer2, text_encoder=text_encoder2, loras=[], skipped_layers=0),
vae=VAEField(vae=vae),
)
2023-07-27 14:54:01 +00:00
@invocation(
"sdxl_refiner_model_loader",
title="SDXL Refiner Model",
tags=["model", "sdxl", "refiner"],
category="model",
version="1.0.1",
)
2023-07-16 16:36:38 +00:00
class SDXLRefinerModelLoaderInvocation(BaseInvocation):
"""Loads an sdxl refiner model, outputting its submodels."""
2023-07-27 14:54:01 +00:00
model: ModelField = InputField(
description=FieldDescriptions.sdxl_refiner_model, input=Input.Direct, ui_type=UIType.SDXLRefinerModel
)
2023-07-16 16:38:04 +00:00
# TODO: precision?
def invoke(self, context: InvocationContext) -> SDXLRefinerModelLoaderOutput:
model_key = self.model.key
2023-07-16 16:36:38 +00:00
# TODO: not found exceptions
if not context.models.exists(model_key):
raise Exception(f"Unknown model: {model_key}")
2023-07-16 16:36:38 +00:00
unet = self.model.model_copy(update={"submodel_type": SubModelType.UNet})
scheduler = self.model.model_copy(update={"submodel_type": SubModelType.Scheduler})
tokenizer2 = self.model.model_copy(update={"submodel_type": SubModelType.Tokenizer2})
text_encoder2 = self.model.model_copy(update={"submodel_type": SubModelType.TextEncoder2})
vae = self.model.model_copy(update={"submodel_type": SubModelType.VAE})
2023-07-16 16:36:38 +00:00
return SDXLRefinerModelLoaderOutput(
unet=UNetField(unet=unet, scheduler=scheduler, loras=[]),
clip2=CLIPField(tokenizer=tokenizer2, text_encoder=text_encoder2, loras=[], skipped_layers=0),
vae=VAEField(vae=vae),
2023-07-16 16:36:38 +00:00
)