mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
BREAKING CHANGES: invocations now require model key, not base/type/name
- Implement new model loader and modify invocations and embeddings - Finish implementation loaders for all models currently supported by InvokeAI. - Move lora, textual_inversion, and model patching support into backend/embeddings. - Restore support for model cache statistics collection (a little ugly, needs work). - Fixed up invocations that load and patch models. - Move seamless and silencewarnings utils into better location
This commit is contained in:
parent
5745ce9c7d
commit
78ef946e01
@ -55,7 +55,7 @@ async def download(
|
||||
) -> DownloadJob:
|
||||
"""Download the source URL to the file or directory indicted in dest."""
|
||||
queue = ApiDependencies.invoker.services.download_queue
|
||||
return queue.download(source, dest, priority, access_token)
|
||||
return queue.download(source, Path(dest), priority, access_token)
|
||||
|
||||
|
||||
@download_queue_router.get(
|
||||
|
@ -1,9 +1,10 @@
|
||||
from typing import List, Optional, Union
|
||||
from typing import Iterator, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from compel import Compel, ReturnedEmbeddingsType
|
||||
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
@ -12,18 +13,21 @@ from invokeai.app.invocations.fields import (
|
||||
UIComponent,
|
||||
)
|
||||
from invokeai.app.invocations.primitives import ConditioningOutput
|
||||
from invokeai.app.services.model_records import UnknownModelException
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.ti_utils import extract_ti_triggers_from_prompt
|
||||
from invokeai.backend.embeddings.lora import LoRAModelRaw
|
||||
from invokeai.backend.embeddings.model_patcher import ModelPatcher
|
||||
from invokeai.backend.embeddings.textual_inversion import TextualInversionModelRaw
|
||||
from invokeai.backend.model_manager import ModelType
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
BasicConditioningInfo,
|
||||
ConditioningFieldData,
|
||||
ExtraConditioningInfo,
|
||||
SDXLConditioningInfo,
|
||||
)
|
||||
from invokeai.backend.util.devices import torch_dtype
|
||||
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from ...backend.model_management.models import ModelNotFoundException, ModelType
|
||||
from ...backend.util.devices import torch_dtype
|
||||
from ..util.ti_utils import extract_ti_triggers_from_prompt
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
@ -64,13 +68,22 @@ class CompelInvocation(BaseInvocation):
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ConditioningOutput:
|
||||
tokenizer_info = context.models.load(**self.clip.tokenizer.model_dump())
|
||||
text_encoder_info = context.models.load(**self.clip.text_encoder.model_dump())
|
||||
tokenizer_info = context.services.model_records.load_model(
|
||||
**self.clip.tokenizer.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
text_encoder_info = context.services.model_records.load_model(
|
||||
**self.clip.text_encoder.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
|
||||
def _lora_loader():
|
||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
for lora in self.clip.loras:
|
||||
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
lora_info = context.services.model_records.load_model(
|
||||
**lora.model_dump(exclude={"weight"}), context=context
|
||||
)
|
||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
|
||||
@ -80,24 +93,20 @@ class CompelInvocation(BaseInvocation):
|
||||
for trigger in extract_ti_triggers_from_prompt(self.prompt):
|
||||
name = trigger[1:-1]
|
||||
try:
|
||||
ti_list.append(
|
||||
(
|
||||
name,
|
||||
context.models.load(
|
||||
model_name=name,
|
||||
base_model=self.clip.text_encoder.base_model,
|
||||
model_type=ModelType.TextualInversion,
|
||||
).context.model,
|
||||
)
|
||||
)
|
||||
except ModelNotFoundException:
|
||||
loaded_model = context.services.model_records.load_model(
|
||||
**self.clip.text_encoder.model_dump(),
|
||||
context=context,
|
||||
).model
|
||||
assert isinstance(loaded_model, TextualInversionModelRaw)
|
||||
ti_list.append((name, loaded_model))
|
||||
except UnknownModelException:
|
||||
# print(e)
|
||||
# import traceback
|
||||
# print(traceback.format_exc())
|
||||
print(f'Warn: trigger: "{trigger}" not found')
|
||||
|
||||
with (
|
||||
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
|
||||
ModelPatcher.apply_ti(tokenizer_info.model, text_encoder_info.model, ti_list) as (
|
||||
tokenizer,
|
||||
ti_manager,
|
||||
),
|
||||
@ -105,7 +114,7 @@ class CompelInvocation(BaseInvocation):
|
||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),
|
||||
ModelPatcher.apply_clip_skip(text_encoder_info.model, self.clip.skipped_layers),
|
||||
):
|
||||
compel = Compel(
|
||||
tokenizer=tokenizer,
|
||||
@ -144,6 +153,8 @@ class CompelInvocation(BaseInvocation):
|
||||
|
||||
|
||||
class SDXLPromptInvocationBase:
|
||||
"""Prompt processor for SDXL models."""
|
||||
|
||||
def run_clip_compel(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
@ -152,20 +163,27 @@ class SDXLPromptInvocationBase:
|
||||
get_pooled: bool,
|
||||
lora_prefix: str,
|
||||
zero_on_empty: bool,
|
||||
):
|
||||
tokenizer_info = context.models.load(**clip_field.tokenizer.model_dump())
|
||||
text_encoder_info = context.models.load(**clip_field.text_encoder.model_dump())
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[ExtraConditioningInfo]]:
|
||||
tokenizer_info = context.services.model_records.load_model(
|
||||
**clip_field.tokenizer.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
text_encoder_info = context.services.model_records.load_model(
|
||||
**clip_field.text_encoder.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
|
||||
# return zero on empty
|
||||
if prompt == "" and zero_on_empty:
|
||||
cpu_text_encoder = text_encoder_info.context.model
|
||||
cpu_text_encoder = text_encoder_info.model
|
||||
assert isinstance(cpu_text_encoder, torch.nn.Module)
|
||||
c = torch.zeros(
|
||||
(
|
||||
1,
|
||||
cpu_text_encoder.config.max_position_embeddings,
|
||||
cpu_text_encoder.config.hidden_size,
|
||||
),
|
||||
dtype=text_encoder_info.context.cache.precision,
|
||||
dtype=cpu_text_encoder.dtype,
|
||||
)
|
||||
if get_pooled:
|
||||
c_pooled = torch.zeros(
|
||||
@ -176,10 +194,14 @@ class SDXLPromptInvocationBase:
|
||||
c_pooled = None
|
||||
return c, c_pooled, None
|
||||
|
||||
def _lora_loader():
|
||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
for lora in clip_field.loras:
|
||||
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
lora_info = context.services.model_records.load_model(
|
||||
**lora.model_dump(exclude={"weight"}), context=context
|
||||
)
|
||||
lora_model = lora_info.model
|
||||
assert isinstance(lora_model, LoRAModelRaw)
|
||||
yield (lora_model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
|
||||
@ -189,24 +211,24 @@ class SDXLPromptInvocationBase:
|
||||
for trigger in extract_ti_triggers_from_prompt(prompt):
|
||||
name = trigger[1:-1]
|
||||
try:
|
||||
ti_list.append(
|
||||
(
|
||||
name,
|
||||
context.models.load(
|
||||
model_name=name,
|
||||
base_model=clip_field.text_encoder.base_model,
|
||||
model_type=ModelType.TextualInversion,
|
||||
).context.model,
|
||||
)
|
||||
)
|
||||
except ModelNotFoundException:
|
||||
ti_model = context.services.model_records.load_model_by_attr(
|
||||
model_name=name,
|
||||
base_model=text_encoder_info.config.base,
|
||||
model_type=ModelType.TextualInversion,
|
||||
context=context,
|
||||
).model
|
||||
assert isinstance(ti_model, TextualInversionModelRaw)
|
||||
ti_list.append((name, ti_model))
|
||||
except UnknownModelException:
|
||||
# print(e)
|
||||
# import traceback
|
||||
# print(traceback.format_exc())
|
||||
print(f'Warn: trigger: "{trigger}" not found')
|
||||
logger.warning(f'trigger: "{trigger}" not found')
|
||||
except ValueError:
|
||||
logger.warning(f'trigger: "{trigger}" more than one similarly-named textual inversion models')
|
||||
|
||||
with (
|
||||
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
|
||||
ModelPatcher.apply_ti(tokenizer_info.model, text_encoder_info.model, ti_list) as (
|
||||
tokenizer,
|
||||
ti_manager,
|
||||
),
|
||||
@ -214,7 +236,7 @@ class SDXLPromptInvocationBase:
|
||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),
|
||||
ModelPatcher.apply_clip_skip(text_encoder_info.model, clip_field.skipped_layers),
|
||||
):
|
||||
compel = Compel(
|
||||
tokenizer=tokenizer,
|
||||
@ -332,6 +354,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
dim=1,
|
||||
)
|
||||
|
||||
assert c2_pooled is not None
|
||||
conditioning_data = ConditioningFieldData(
|
||||
conditionings=[
|
||||
SDXLConditioningInfo(
|
||||
@ -380,6 +403,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
|
||||
|
||||
add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)])
|
||||
|
||||
assert c2_pooled is not None
|
||||
conditioning_data = ConditioningFieldData(
|
||||
conditionings=[
|
||||
SDXLConditioningInfo(
|
||||
|
@ -23,7 +23,7 @@ from controlnet_aux import (
|
||||
)
|
||||
from controlnet_aux.util import HWC3, ade_palette
|
||||
from PIL import Image
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
|
||||
from pydantic import BaseModel, Field, field_validator, model_validator
|
||||
|
||||
from invokeai.app.invocations.fields import (
|
||||
FieldDescriptions,
|
||||
@ -60,10 +60,7 @@ CONTROLNET_RESIZE_VALUES = Literal[
|
||||
class ControlNetModelField(BaseModel):
|
||||
"""ControlNet model field"""
|
||||
|
||||
model_name: str = Field(description="Name of the ControlNet model")
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
key: str = Field(description="Model config record key for the ControlNet model")
|
||||
|
||||
|
||||
class ControlField(BaseModel):
|
||||
|
@ -2,7 +2,8 @@ import os
|
||||
from builtins import float
|
||||
from typing import List, Union
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
|
||||
from pydantic import BaseModel, Field, field_validator, model_validator
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
@ -18,18 +19,13 @@ from invokeai.backend.model_management.models.base import BaseModelType, ModelTy
|
||||
from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id
|
||||
|
||||
|
||||
# LS: Consider moving these two classes into model.py
|
||||
class IPAdapterModelField(BaseModel):
|
||||
model_name: str = Field(description="Name of the IP-Adapter model")
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
key: str = Field(description="Key to the IP-Adapter model")
|
||||
|
||||
|
||||
class CLIPVisionModelField(BaseModel):
|
||||
model_name: str = Field(description="Name of the CLIP Vision image encoder model")
|
||||
base_model: BaseModelType = Field(description="Base model (usually 'Any')")
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
key: str = Field(description="Key to the CLIP Vision image encoder model")
|
||||
|
||||
|
||||
class IPAdapterField(BaseModel):
|
||||
@ -46,16 +42,26 @@ class IPAdapterField(BaseModel):
|
||||
|
||||
@field_validator("weight")
|
||||
@classmethod
|
||||
def validate_ip_adapter_weight(cls, v):
|
||||
def validate_ip_adapter_weight(cls, v: float) -> float:
|
||||
validate_weights(v)
|
||||
return v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_begin_end_step_percent(self):
|
||||
def validate_begin_end_step_percent(self) -> Self:
|
||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
||||
return self
|
||||
|
||||
|
||||
def get_ip_adapter_image_encoder_model_id(model_path: str):
|
||||
"""Read the ID of the image encoder associated with the IP-Adapter at `model_path`."""
|
||||
image_encoder_config_file = os.path.join(model_path, "image_encoder.txt")
|
||||
|
||||
with open(image_encoder_config_file, "r") as f:
|
||||
image_encoder_model = f.readline().strip()
|
||||
|
||||
return image_encoder_model
|
||||
|
||||
|
||||
@invocation_output("ip_adapter_output")
|
||||
class IPAdapterOutput(BaseInvocationOutput):
|
||||
# Outputs
|
||||
@ -84,33 +90,36 @@ class IPAdapterInvocation(BaseInvocation):
|
||||
|
||||
@field_validator("weight")
|
||||
@classmethod
|
||||
def validate_ip_adapter_weight(cls, v):
|
||||
def validate_ip_adapter_weight(cls, v: float) -> float:
|
||||
validate_weights(v)
|
||||
return v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_begin_end_step_percent(self):
|
||||
def validate_begin_end_step_percent(self) -> Self:
|
||||
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
|
||||
return self
|
||||
|
||||
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
|
||||
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
|
||||
ip_adapter_info = context.models.get_info(
|
||||
self.ip_adapter_model.model_name, self.ip_adapter_model.base_model, ModelType.IPAdapter
|
||||
)
|
||||
ip_adapter_info = context.services.model_records.get_model(self.ip_adapter_model.key)
|
||||
# HACK(ryand): This is bad for a couple of reasons: 1) we are bypassing the model manager to read the model
|
||||
# directly, and 2) we are reading from disk every time this invocation is called without caching the result.
|
||||
# A better solution would be to store the image encoder model reference in the IP-Adapter model info, but this
|
||||
# is currently messy due to differences between how the model info is generated when installing a model from
|
||||
# disk vs. downloading the model.
|
||||
# TODO (LS): Fix the issue above by:
|
||||
# 1. Change IPAdapterConfig definition to include a field for the repo_id of the image encoder model.
|
||||
# 2. Update probe.py to read `image_encoder.txt` and store it in the config.
|
||||
# 3. Change below to get the image encoder from the configuration record.
|
||||
image_encoder_model_id = get_ip_adapter_image_encoder_model_id(
|
||||
os.path.join(context.config.get().models_path, ip_adapter_info["path"])
|
||||
os.path.join(context.services.configuration.get_config().models_path, ip_adapter_info.path)
|
||||
)
|
||||
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
|
||||
image_encoder_model = CLIPVisionModelField(
|
||||
model_name=image_encoder_model_name,
|
||||
base_model=BaseModelType.Any,
|
||||
image_encoder_models = context.services.model_records.search_by_attr(
|
||||
model_name=image_encoder_model_name, base_model=BaseModelType.Any, model_type=ModelType.CLIPVision
|
||||
)
|
||||
assert len(image_encoder_models) == 1
|
||||
image_encoder_model = CLIPVisionModelField(key=image_encoder_models[0].key)
|
||||
return IPAdapterOutput(
|
||||
ip_adapter=IPAdapterField(
|
||||
image=self.image,
|
||||
|
@ -3,13 +3,13 @@
|
||||
import math
|
||||
from contextlib import ExitStack
|
||||
from functools import singledispatchmethod
|
||||
from typing import List, Literal, Optional, Union
|
||||
from typing import Iterator, List, Literal, Optional, Tuple, Union
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from diffusers import AutoencoderKL, AutoencoderTiny
|
||||
from diffusers import AutoencoderKL, AutoencoderTiny, UNet2DConditionModel
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.models.adapter import T2IAdapter
|
||||
from diffusers.models.attention_processor import (
|
||||
@ -46,14 +46,13 @@ from invokeai.app.invocations.primitives import (
|
||||
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||
from invokeai.backend.embeddings.model_patcher import ModelPatcher
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
||||
from invokeai.backend.model_management.models import ModelType, SilenceWarnings
|
||||
from invokeai.backend.model_manager import AnyModel, BaseModelType
|
||||
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo
|
||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||
|
||||
from ...backend.model_management.lora import ModelPatcher
|
||||
from ...backend.model_management.models import BaseModelType
|
||||
from ...backend.model_management.seamless import set_seamless
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
from ...backend.stable_diffusion.diffusers_pipeline import (
|
||||
ControlNetData,
|
||||
IPAdapterData,
|
||||
@ -149,7 +148,10 @@ class CreateDenoiseMaskInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
if image is not None:
|
||||
vae_info = context.models.load(**self.vae.vae.model_dump())
|
||||
vae_info = context.services.model_records.load_model(
|
||||
**self.vae.vae.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
|
||||
img_mask = tv_resize(mask, image.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
|
||||
masked_image = image * torch.where(img_mask < 0.5, 0.0, 1.0)
|
||||
@ -175,7 +177,10 @@ def get_scheduler(
|
||||
seed: int,
|
||||
) -> Scheduler:
|
||||
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
|
||||
orig_scheduler_info = context.models.load(**scheduler_info.model_dump())
|
||||
orig_scheduler_info = context.services.model_records.load_model(
|
||||
**scheduler_info.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
with orig_scheduler_info as orig_scheduler:
|
||||
scheduler_config = orig_scheduler.config
|
||||
|
||||
@ -389,10 +394,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
controlnet_data = []
|
||||
for control_info in control_list:
|
||||
control_model = exit_stack.enter_context(
|
||||
context.models.load(
|
||||
model_name=control_info.control_model.model_name,
|
||||
model_type=ModelType.ControlNet,
|
||||
base_model=control_info.control_model.base_model,
|
||||
context.services.model_records.load_model(
|
||||
key=control_info.control_model.key,
|
||||
context=context,
|
||||
)
|
||||
)
|
||||
|
||||
@ -456,17 +460,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
conditioning_data.ip_adapter_conditioning = []
|
||||
for single_ip_adapter in ip_adapter:
|
||||
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
|
||||
context.models.load(
|
||||
model_name=single_ip_adapter.ip_adapter_model.model_name,
|
||||
model_type=ModelType.IPAdapter,
|
||||
base_model=single_ip_adapter.ip_adapter_model.base_model,
|
||||
context.services.model_records.load_model(
|
||||
key=single_ip_adapter.ip_adapter_model.key,
|
||||
context=context,
|
||||
)
|
||||
)
|
||||
|
||||
image_encoder_model_info = context.models.load(
|
||||
model_name=single_ip_adapter.image_encoder_model.model_name,
|
||||
model_type=ModelType.CLIPVision,
|
||||
base_model=single_ip_adapter.image_encoder_model.base_model,
|
||||
image_encoder_model_info = context.services.model_records.load_model(
|
||||
key=single_ip_adapter.image_encoder_model.key,
|
||||
context=context,
|
||||
)
|
||||
|
||||
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
|
||||
@ -518,10 +520,9 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
|
||||
t2i_adapter_data = []
|
||||
for t2i_adapter_field in t2i_adapter:
|
||||
t2i_adapter_model_info = context.models.load(
|
||||
model_name=t2i_adapter_field.t2i_adapter_model.model_name,
|
||||
model_type=ModelType.T2IAdapter,
|
||||
base_model=t2i_adapter_field.t2i_adapter_model.base_model,
|
||||
t2i_adapter_model_info = context.services.model_records.load_model(
|
||||
key=t2i_adapter_field.t2i_adapter_model.key,
|
||||
context=context,
|
||||
)
|
||||
image = context.images.get_pil(t2i_adapter_field.image.image_name)
|
||||
|
||||
@ -556,7 +557,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
do_classifier_free_guidance=False,
|
||||
width=t2i_input_width,
|
||||
height=t2i_input_height,
|
||||
num_channels=t2i_adapter_model.config.in_channels,
|
||||
num_channels=t2i_adapter_model.config["in_channels"], # mypy treats this as a FrozenDict
|
||||
device=t2i_adapter_model.device,
|
||||
dtype=t2i_adapter_model.dtype,
|
||||
resize_mode=t2i_adapter_field.resize_mode,
|
||||
@ -662,22 +663,30 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
def step_callback(state: PipelineIntermediateState):
|
||||
context.util.sd_step_callback(state, self.unet.unet.base_model)
|
||||
|
||||
def _lora_loader():
|
||||
def _lora_loader() -> Iterator[Tuple[AnyModel, float]]:
|
||||
for lora in self.unet.loras:
|
||||
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
|
||||
yield (lora_info.context.model, lora.weight)
|
||||
lora_info = context.services.model_records.load_model(
|
||||
**lora.model_dump(exclude={"weight"}),
|
||||
context=context,
|
||||
)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
|
||||
unet_info = context.models.load(**self.unet.unet.model_dump())
|
||||
unet_info = context.services.model_records.load_model(
|
||||
**self.unet.unet.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
assert isinstance(unet_info.model, UNet2DConditionModel)
|
||||
with (
|
||||
ExitStack() as exit_stack,
|
||||
ModelPatcher.apply_freeu(unet_info.context.model, self.unet.freeu_config),
|
||||
set_seamless(unet_info.context.model, self.unet.seamless_axes),
|
||||
ModelPatcher.apply_freeu(unet_info.model, self.unet.freeu_config),
|
||||
set_seamless(unet_info.model, self.unet.seamless_axes), # FIXME
|
||||
unet_info as unet,
|
||||
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
||||
ModelPatcher.apply_lora_unet(unet, _lora_loader()),
|
||||
):
|
||||
assert isinstance(unet, torch.Tensor)
|
||||
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||
if noise is not None:
|
||||
noise = noise.to(device=unet.device, dtype=unet.dtype)
|
||||
@ -774,9 +783,13 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
latents = context.tensors.load(self.latents.latents_name)
|
||||
|
||||
vae_info = context.models.load(**self.vae.vae.model_dump())
|
||||
vae_info = context.services.model_records.load_model(
|
||||
**self.vae.vae.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
|
||||
with set_seamless(vae_info.context.model, self.vae.seamless_axes), vae_info as vae:
|
||||
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae:
|
||||
assert isinstance(vae, torch.Tensor)
|
||||
latents = latents.to(vae.device)
|
||||
if self.fp32:
|
||||
vae.to(dtype=torch.float32)
|
||||
@ -995,7 +1008,10 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||
image = context.images.get_pil(self.image.image_name)
|
||||
|
||||
vae_info = context.models.load(**self.vae.vae.model_dump())
|
||||
vae_info = context.services.model_records.load_model(
|
||||
**self.vae.vae.model_dump(),
|
||||
context=context,
|
||||
)
|
||||
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
if image_tensor.dim() == 3:
|
||||
|
@ -1,13 +1,13 @@
|
||||
import copy
|
||||
from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
|
||||
from ...backend.model_management import BaseModelType, ModelType, SubModelType
|
||||
from ...backend.model_manager import SubModelType
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
@ -17,13 +17,9 @@ from .baseinvocation import (
|
||||
|
||||
|
||||
class ModelInfo(BaseModel):
|
||||
model_name: str = Field(description="Info to load submodel")
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
model_type: ModelType = Field(description="Info to load submodel")
|
||||
key: str = Field(description="Info to load submodel")
|
||||
submodel: Optional[SubModelType] = Field(default=None, description="Info to load submodel")
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
|
||||
|
||||
class LoraInfo(ModelInfo):
|
||||
weight: float = Field(description="Lora's weight which to use when apply to model")
|
||||
@ -52,7 +48,7 @@ class VaeField(BaseModel):
|
||||
|
||||
@invocation_output("unet_output")
|
||||
class UNetOutput(BaseInvocationOutput):
|
||||
"""Base class for invocations that output a UNet field"""
|
||||
"""Base class for invocations that output a UNet field."""
|
||||
|
||||
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
|
||||
|
||||
@ -81,20 +77,13 @@ class ModelLoaderOutput(UNetOutput, CLIPOutput, VAEOutput):
|
||||
class MainModelField(BaseModel):
|
||||
"""Main model field"""
|
||||
|
||||
model_name: str = Field(description="Name of the model")
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
model_type: ModelType = Field(description="Model Type")
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
key: str = Field(description="Model key")
|
||||
|
||||
|
||||
class LoRAModelField(BaseModel):
|
||||
"""LoRA model field"""
|
||||
|
||||
model_name: str = Field(description="Name of the LoRA model")
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
key: str = Field(description="LoRA model key")
|
||||
|
||||
|
||||
@invocation(
|
||||
@ -111,74 +100,31 @@ class MainModelLoaderInvocation(BaseInvocation):
|
||||
# TODO: precision?
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
|
||||
base_model = self.model.base_model
|
||||
model_name = self.model.model_name
|
||||
model_type = ModelType.Main
|
||||
key = self.model.key
|
||||
|
||||
# TODO: not found exceptions
|
||||
if not context.models.exists(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
):
|
||||
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
|
||||
|
||||
"""
|
||||
if not context.services.model_manager.model_exists(
|
||||
model_name=self.model_name,
|
||||
model_type=SDModelType.Diffusers,
|
||||
submodel=SDModelType.Tokenizer,
|
||||
):
|
||||
raise Exception(
|
||||
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
|
||||
)
|
||||
|
||||
if not context.services.model_manager.model_exists(
|
||||
model_name=self.model_name,
|
||||
model_type=SDModelType.Diffusers,
|
||||
submodel=SDModelType.TextEncoder,
|
||||
):
|
||||
raise Exception(
|
||||
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
|
||||
)
|
||||
|
||||
if not context.services.model_manager.model_exists(
|
||||
model_name=self.model_name,
|
||||
model_type=SDModelType.Diffusers,
|
||||
submodel=SDModelType.UNet,
|
||||
):
|
||||
raise Exception(
|
||||
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
|
||||
)
|
||||
"""
|
||||
if not context.services.model_records.exists(key):
|
||||
raise Exception(f"Unknown model {key}")
|
||||
|
||||
return ModelLoaderOutput(
|
||||
unet=UNetField(
|
||||
unet=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=key,
|
||||
submodel=SubModelType.UNet,
|
||||
),
|
||||
scheduler=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=key,
|
||||
submodel=SubModelType.Scheduler,
|
||||
),
|
||||
loras=[],
|
||||
),
|
||||
clip=ClipField(
|
||||
tokenizer=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=key,
|
||||
submodel=SubModelType.Tokenizer,
|
||||
),
|
||||
text_encoder=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=key,
|
||||
submodel=SubModelType.TextEncoder,
|
||||
),
|
||||
loras=[],
|
||||
@ -186,9 +132,7 @@ class MainModelLoaderInvocation(BaseInvocation):
|
||||
),
|
||||
vae=VaeField(
|
||||
vae=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=key,
|
||||
submodel=SubModelType.Vae,
|
||||
),
|
||||
),
|
||||
@ -226,21 +170,16 @@ class LoraLoaderInvocation(BaseInvocation):
|
||||
if self.lora is None:
|
||||
raise Exception("No LoRA provided")
|
||||
|
||||
base_model = self.lora.base_model
|
||||
lora_name = self.lora.model_name
|
||||
lora_key = self.lora.key
|
||||
|
||||
if not context.models.exists(
|
||||
base_model=base_model,
|
||||
model_name=lora_name,
|
||||
model_type=ModelType.Lora,
|
||||
):
|
||||
raise Exception(f"Unkown lora name: {lora_name}!")
|
||||
if not context.services.model_records.exists(lora_key):
|
||||
raise Exception(f"Unkown lora: {lora_key}!")
|
||||
|
||||
if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras):
|
||||
raise Exception(f'Lora "{lora_name}" already applied to unet')
|
||||
if self.unet is not None and any(lora.key == lora_key for lora in self.unet.loras):
|
||||
raise Exception(f'Lora "{lora_key}" already applied to unet')
|
||||
|
||||
if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras):
|
||||
raise Exception(f'Lora "{lora_name}" already applied to clip')
|
||||
if self.clip is not None and any(lora.key == lora_key for lora in self.clip.loras):
|
||||
raise Exception(f'Lora "{lora_key}" already applied to clip')
|
||||
|
||||
output = LoraLoaderOutput()
|
||||
|
||||
@ -248,9 +187,7 @@ class LoraLoaderInvocation(BaseInvocation):
|
||||
output.unet = copy.deepcopy(self.unet)
|
||||
output.unet.loras.append(
|
||||
LoraInfo(
|
||||
base_model=base_model,
|
||||
model_name=lora_name,
|
||||
model_type=ModelType.Lora,
|
||||
key=lora_key,
|
||||
submodel=None,
|
||||
weight=self.weight,
|
||||
)
|
||||
@ -260,9 +197,7 @@ class LoraLoaderInvocation(BaseInvocation):
|
||||
output.clip = copy.deepcopy(self.clip)
|
||||
output.clip.loras.append(
|
||||
LoraInfo(
|
||||
base_model=base_model,
|
||||
model_name=lora_name,
|
||||
model_type=ModelType.Lora,
|
||||
key=lora_key,
|
||||
submodel=None,
|
||||
weight=self.weight,
|
||||
)
|
||||
@ -315,24 +250,19 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
|
||||
if self.lora is None:
|
||||
raise Exception("No LoRA provided")
|
||||
|
||||
base_model = self.lora.base_model
|
||||
lora_name = self.lora.model_name
|
||||
lora_key = self.lora.key
|
||||
|
||||
if not context.models.exists(
|
||||
base_model=base_model,
|
||||
model_name=lora_name,
|
||||
model_type=ModelType.Lora,
|
||||
):
|
||||
raise Exception(f"Unknown lora name: {lora_name}!")
|
||||
if not context.services.model_records.exists(lora_key):
|
||||
raise Exception(f"Unknown lora: {lora_key}!")
|
||||
|
||||
if self.unet is not None and any(lora.model_name == lora_name for lora in self.unet.loras):
|
||||
raise Exception(f'Lora "{lora_name}" already applied to unet')
|
||||
if self.unet is not None and any(lora.key == lora_key for lora in self.unet.loras):
|
||||
raise Exception(f'Lora "{lora_key}" already applied to unet')
|
||||
|
||||
if self.clip is not None and any(lora.model_name == lora_name for lora in self.clip.loras):
|
||||
raise Exception(f'Lora "{lora_name}" already applied to clip')
|
||||
if self.clip is not None and any(lora.key == lora_key for lora in self.clip.loras):
|
||||
raise Exception(f'Lora "{lora_key}" already applied to clip')
|
||||
|
||||
if self.clip2 is not None and any(lora.model_name == lora_name for lora in self.clip2.loras):
|
||||
raise Exception(f'Lora "{lora_name}" already applied to clip2')
|
||||
if self.clip2 is not None and any(lora.key == lora_key for lora in self.clip2.loras):
|
||||
raise Exception(f'Lora "{lora_key}" already applied to clip2')
|
||||
|
||||
output = SDXLLoraLoaderOutput()
|
||||
|
||||
@ -340,9 +270,7 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
|
||||
output.unet = copy.deepcopy(self.unet)
|
||||
output.unet.loras.append(
|
||||
LoraInfo(
|
||||
base_model=base_model,
|
||||
model_name=lora_name,
|
||||
model_type=ModelType.Lora,
|
||||
key=lora_key,
|
||||
submodel=None,
|
||||
weight=self.weight,
|
||||
)
|
||||
@ -352,9 +280,7 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
|
||||
output.clip = copy.deepcopy(self.clip)
|
||||
output.clip.loras.append(
|
||||
LoraInfo(
|
||||
base_model=base_model,
|
||||
model_name=lora_name,
|
||||
model_type=ModelType.Lora,
|
||||
key=lora_key,
|
||||
submodel=None,
|
||||
weight=self.weight,
|
||||
)
|
||||
@ -364,9 +290,7 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
|
||||
output.clip2 = copy.deepcopy(self.clip2)
|
||||
output.clip2.loras.append(
|
||||
LoraInfo(
|
||||
base_model=base_model,
|
||||
model_name=lora_name,
|
||||
model_type=ModelType.Lora,
|
||||
key=lora_key,
|
||||
submodel=None,
|
||||
weight=self.weight,
|
||||
)
|
||||
@ -378,10 +302,7 @@ class SDXLLoraLoaderInvocation(BaseInvocation):
|
||||
class VAEModelField(BaseModel):
|
||||
"""Vae model field"""
|
||||
|
||||
model_name: str = Field(description="Name of the model")
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
key: str = Field(description="Model's key")
|
||||
|
||||
|
||||
@invocation("vae_loader", title="VAE", tags=["vae", "model"], category="model", version="1.0.1")
|
||||
@ -395,25 +316,12 @@ class VaeLoaderInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> VAEOutput:
|
||||
base_model = self.vae_model.base_model
|
||||
model_name = self.vae_model.model_name
|
||||
model_type = ModelType.Vae
|
||||
key = self.vae_model.key
|
||||
|
||||
if not context.models.exists(
|
||||
base_model=base_model,
|
||||
model_name=model_name,
|
||||
model_type=model_type,
|
||||
):
|
||||
raise Exception(f"Unkown vae name: {model_name}!")
|
||||
return VAEOutput(
|
||||
vae=VaeField(
|
||||
vae=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
)
|
||||
)
|
||||
)
|
||||
if not context.services.model_records.exists(key):
|
||||
raise Exception(f"Unkown vae: {key}!")
|
||||
|
||||
return VAEOutput(vae=VaeField(vae=ModelInfo(key=key)))
|
||||
|
||||
|
||||
@invocation_output("seamless_output")
|
||||
|
@ -1,7 +1,7 @@
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField, UIType
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_manager import SubModelType
|
||||
|
||||
from ...backend.model_management import ModelType, SubModelType
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
@ -40,45 +40,31 @@ class SDXLModelLoaderInvocation(BaseInvocation):
|
||||
# TODO: precision?
|
||||
|
||||
def invoke(self, context: InvocationContext) -> SDXLModelLoaderOutput:
|
||||
base_model = self.model.base_model
|
||||
model_name = self.model.model_name
|
||||
model_type = ModelType.Main
|
||||
model_key = self.model.key
|
||||
|
||||
# TODO: not found exceptions
|
||||
if not context.models.exists(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
):
|
||||
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
|
||||
if not context.services.model_records.exists(model_key):
|
||||
raise Exception(f"Unknown model: {model_key}")
|
||||
|
||||
return SDXLModelLoaderOutput(
|
||||
unet=UNetField(
|
||||
unet=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=model_key,
|
||||
submodel=SubModelType.UNet,
|
||||
),
|
||||
scheduler=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=model_key,
|
||||
submodel=SubModelType.Scheduler,
|
||||
),
|
||||
loras=[],
|
||||
),
|
||||
clip=ClipField(
|
||||
tokenizer=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=model_key,
|
||||
submodel=SubModelType.Tokenizer,
|
||||
),
|
||||
text_encoder=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=model_key,
|
||||
submodel=SubModelType.TextEncoder,
|
||||
),
|
||||
loras=[],
|
||||
@ -86,15 +72,11 @@ class SDXLModelLoaderInvocation(BaseInvocation):
|
||||
),
|
||||
clip2=ClipField(
|
||||
tokenizer=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=model_key,
|
||||
submodel=SubModelType.Tokenizer2,
|
||||
),
|
||||
text_encoder=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=model_key,
|
||||
submodel=SubModelType.TextEncoder2,
|
||||
),
|
||||
loras=[],
|
||||
@ -102,9 +84,7 @@ class SDXLModelLoaderInvocation(BaseInvocation):
|
||||
),
|
||||
vae=VaeField(
|
||||
vae=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=model_key,
|
||||
submodel=SubModelType.Vae,
|
||||
),
|
||||
),
|
||||
@ -129,45 +109,31 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
|
||||
# TODO: precision?
|
||||
|
||||
def invoke(self, context: InvocationContext) -> SDXLRefinerModelLoaderOutput:
|
||||
base_model = self.model.base_model
|
||||
model_name = self.model.model_name
|
||||
model_type = ModelType.Main
|
||||
model_key = self.model.key
|
||||
|
||||
# TODO: not found exceptions
|
||||
if not context.models.exists(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
):
|
||||
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
|
||||
if not context.services.model_records.exists(model_key):
|
||||
raise Exception(f"Unknown model: {model_key}")
|
||||
|
||||
return SDXLRefinerModelLoaderOutput(
|
||||
unet=UNetField(
|
||||
unet=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=model_key,
|
||||
submodel=SubModelType.UNet,
|
||||
),
|
||||
scheduler=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=model_key,
|
||||
submodel=SubModelType.Scheduler,
|
||||
),
|
||||
loras=[],
|
||||
),
|
||||
clip2=ClipField(
|
||||
tokenizer=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=model_key,
|
||||
submodel=SubModelType.Tokenizer2,
|
||||
),
|
||||
text_encoder=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=model_key,
|
||||
submodel=SubModelType.TextEncoder2,
|
||||
),
|
||||
loras=[],
|
||||
@ -175,9 +141,7 @@ class SDXLRefinerModelLoaderInvocation(BaseInvocation):
|
||||
),
|
||||
vae=VaeField(
|
||||
vae=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
key=model_key,
|
||||
submodel=SubModelType.Vae,
|
||||
),
|
||||
),
|
||||
|
@ -1,6 +1,6 @@
|
||||
from typing import Union
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field, field_validator, model_validator
|
||||
from pydantic import BaseModel, Field, field_validator, model_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import (
|
||||
BaseInvocation,
|
||||
@ -12,14 +12,10 @@ from invokeai.app.invocations.controlnet_image_processors import CONTROLNET_RESI
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, ImageField, Input, InputField, OutputField
|
||||
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.model_management.models.base import BaseModelType
|
||||
|
||||
|
||||
class T2IAdapterModelField(BaseModel):
|
||||
model_name: str = Field(description="Name of the T2I-Adapter model")
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
|
||||
model_config = ConfigDict(protected_namespaces=())
|
||||
key: str = Field(description="Model record key for the T2I-Adapter model")
|
||||
|
||||
|
||||
class T2IAdapterField(BaseModel):
|
||||
|
@ -11,8 +11,7 @@ from invokeai.app.services.session_queue.session_queue_common import (
|
||||
SessionQueueStatus,
|
||||
)
|
||||
from invokeai.app.util.misc import get_timestamp
|
||||
from invokeai.backend.model_management.model_manager import LoadedModelInfo
|
||||
from invokeai.backend.model_management.models.base import BaseModelType, ModelType, SubModelType
|
||||
from invokeai.backend.model_manager import AnyModelConfig
|
||||
|
||||
|
||||
class EventServiceBase:
|
||||
@ -171,10 +170,7 @@ class EventServiceBase:
|
||||
queue_item_id: int,
|
||||
queue_batch_id: str,
|
||||
graph_execution_state_id: str,
|
||||
model_name: str,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
submodel: SubModelType,
|
||||
model_config: AnyModelConfig,
|
||||
) -> None:
|
||||
"""Emitted when a model is requested"""
|
||||
self.__emit_queue_event(
|
||||
@ -184,10 +180,7 @@ class EventServiceBase:
|
||||
"queue_item_id": queue_item_id,
|
||||
"queue_batch_id": queue_batch_id,
|
||||
"graph_execution_state_id": graph_execution_state_id,
|
||||
"model_name": model_name,
|
||||
"base_model": base_model,
|
||||
"model_type": model_type,
|
||||
"submodel": submodel,
|
||||
"model_config": model_config.model_dump(),
|
||||
},
|
||||
)
|
||||
|
||||
@ -197,11 +190,7 @@ class EventServiceBase:
|
||||
queue_item_id: int,
|
||||
queue_batch_id: str,
|
||||
graph_execution_state_id: str,
|
||||
model_name: str,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
submodel: SubModelType,
|
||||
loaded_model_info: LoadedModelInfo,
|
||||
model_config: AnyModelConfig,
|
||||
) -> None:
|
||||
"""Emitted when a model is correctly loaded (returns model info)"""
|
||||
self.__emit_queue_event(
|
||||
@ -211,13 +200,7 @@ class EventServiceBase:
|
||||
"queue_item_id": queue_item_id,
|
||||
"queue_batch_id": queue_batch_id,
|
||||
"graph_execution_state_id": graph_execution_state_id,
|
||||
"model_name": model_name,
|
||||
"base_model": base_model,
|
||||
"model_type": model_type,
|
||||
"submodel": submodel,
|
||||
"hash": loaded_model_info.hash,
|
||||
"location": str(loaded_model_info.location),
|
||||
"precision": str(loaded_model_info.precision),
|
||||
"model_config": model_config.model_dump(),
|
||||
},
|
||||
)
|
||||
|
||||
|
@ -2,6 +2,7 @@ import json
|
||||
import time
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
from typing import Iterator
|
||||
|
||||
import psutil
|
||||
import torch
|
||||
@ -10,7 +11,7 @@ import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation
|
||||
from invokeai.app.services.invoker import Invoker
|
||||
from invokeai.app.services.item_storage.item_storage_common import ItemNotFoundError
|
||||
from invokeai.backend.model_management.model_cache import CacheStats
|
||||
from invokeai.backend.model_manager.load.model_cache import CacheStats
|
||||
|
||||
from .invocation_stats_base import InvocationStatsServiceBase
|
||||
from .invocation_stats_common import (
|
||||
@ -41,7 +42,10 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
||||
self._invoker = invoker
|
||||
|
||||
@contextmanager
|
||||
def collect_stats(self, invocation: BaseInvocation, graph_execution_state_id: str):
|
||||
def collect_stats(self, invocation: BaseInvocation, graph_execution_state_id: str) -> Iterator[None]:
|
||||
services = self._invoker.services
|
||||
if services.model_records is None or services.model_records.loader is None:
|
||||
yield None
|
||||
if not self._stats.get(graph_execution_state_id):
|
||||
# First time we're seeing this graph_execution_state_id.
|
||||
self._stats[graph_execution_state_id] = GraphExecutionStats()
|
||||
@ -55,8 +59,10 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
||||
start_ram = psutil.Process().memory_info().rss
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
if self._invoker.services.model_manager:
|
||||
self._invoker.services.model_manager.collect_cache_stats(self._cache_stats[graph_execution_state_id])
|
||||
|
||||
# TO DO [LS]: clean up loader service - shouldn't be an attribute of model records
|
||||
assert services.model_records.loader is not None
|
||||
services.model_records.loader.ram_cache.stats = self._cache_stats[graph_execution_state_id]
|
||||
|
||||
try:
|
||||
# Let the invocation run.
|
||||
@ -73,7 +79,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
||||
)
|
||||
self._stats[graph_execution_state_id].add_node_execution_stats(node_stats)
|
||||
|
||||
def _prune_stale_stats(self):
|
||||
def _prune_stale_stats(self) -> None:
|
||||
"""Check all graphs being tracked and prune any that have completed/errored.
|
||||
|
||||
This shouldn't be necessary, but we don't have totally robust upstream handling of graph completions/errors, so
|
||||
|
@ -10,6 +10,7 @@ from typing import Any, Dict, List, Optional, Set, Tuple, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import InvocationContext
|
||||
from invokeai.app.services.shared.pagination import PaginatedResults
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModelConfig,
|
||||
@ -19,6 +20,7 @@ from invokeai.backend.model_manager import (
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.load import AnyModelLoader
|
||||
from invokeai.backend.model_manager.metadata import AnyModelRepoMetadata, ModelMetadataStore
|
||||
|
||||
|
||||
@ -110,12 +112,45 @@ class ModelRecordServiceBase(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def load_model(self, key: str, submodel_type: Optional[SubModelType]) -> LoadedModel:
|
||||
def load_model(
|
||||
self,
|
||||
key: str,
|
||||
submodel: Optional[SubModelType] = None,
|
||||
context: Optional[InvocationContext] = None,
|
||||
) -> LoadedModel:
|
||||
"""
|
||||
Load the indicated model into memory and return a LoadedModel object.
|
||||
|
||||
:param key: Key of model config to be fetched.
|
||||
:param submodel_type: For main (pipeline models), the submodel to fetch
|
||||
:param submodel: For main (pipeline models), the submodel to fetch
|
||||
:param context: Invocation context, used for event issuing.
|
||||
|
||||
Exceptions: UnknownModelException -- model with this key not known
|
||||
NotImplementedException -- a model loader was not provided at initialization time
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def load_model_by_attr(
|
||||
self,
|
||||
model_name: str,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
submodel: Optional[SubModelType] = None,
|
||||
context: Optional[InvocationContext] = None,
|
||||
) -> LoadedModel:
|
||||
"""
|
||||
Load the indicated model into memory and return a LoadedModel object.
|
||||
|
||||
This is provided for API compatability with the get_model() method
|
||||
in the original model manager. However, note that LoadedModel is
|
||||
not the same as the original ModelInfo that ws returned.
|
||||
|
||||
:param model_name: Key of model config to be fetched.
|
||||
:param base_model: Base model
|
||||
:param model_type: Type of the model
|
||||
:param submodel: For main (pipeline models), the submodel to fetch
|
||||
:param context: The invocation context.
|
||||
|
||||
Exceptions: UnknownModelException -- model with this key not known
|
||||
NotImplementedException -- a model loader was not provided at initialization time
|
||||
@ -166,7 +201,7 @@ class ModelRecordServiceBase(ABC):
|
||||
@abstractmethod
|
||||
def exists(self, key: str) -> bool:
|
||||
"""
|
||||
Return True if a model with the indicated key exists in the databse.
|
||||
Return True if a model with the indicated key exists in the database.
|
||||
|
||||
:param key: Unique key for the model to be deleted
|
||||
"""
|
||||
@ -209,6 +244,12 @@ class ModelRecordServiceBase(ABC):
|
||||
"""
|
||||
pass
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def loader(self) -> Optional[AnyModelLoader]:
|
||||
"""Return the model loader used by this instance."""
|
||||
pass
|
||||
|
||||
def all_models(self) -> List[AnyModelConfig]:
|
||||
"""Return all the model configs in the database."""
|
||||
return self.search_by_attr()
|
||||
|
@ -46,6 +46,8 @@ from math import ceil
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Set, Tuple, Union
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import InvocationContext
|
||||
from invokeai.app.services.invocation_processor.invocation_processor_common import CanceledException
|
||||
from invokeai.app.services.shared.pagination import PaginatedResults
|
||||
from invokeai.backend.model_manager.config import (
|
||||
AnyModelConfig,
|
||||
@ -88,6 +90,11 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
|
||||
"""Return the underlying database."""
|
||||
return self._db
|
||||
|
||||
@property
|
||||
def loader(self) -> Optional[AnyModelLoader]:
|
||||
"""Return the model loader used by this instance."""
|
||||
return self._loader
|
||||
|
||||
def add_model(self, key: str, config: Union[Dict[str, Any], AnyModelConfig]) -> AnyModelConfig:
|
||||
"""
|
||||
Add a model to the database.
|
||||
@ -213,20 +220,73 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
|
||||
model = ModelConfigFactory.make_config(json.loads(rows[0]), timestamp=rows[1])
|
||||
return model
|
||||
|
||||
def load_model(self, key: str, submodel_type: Optional[SubModelType]) -> LoadedModel:
|
||||
def load_model(
|
||||
self,
|
||||
key: str,
|
||||
submodel: Optional[SubModelType],
|
||||
context: Optional[InvocationContext] = None,
|
||||
) -> LoadedModel:
|
||||
"""
|
||||
Load the indicated model into memory and return a LoadedModel object.
|
||||
|
||||
:param key: Key of model config to be fetched.
|
||||
:param submodel_type: For main (pipeline models), the submodel to fetch.
|
||||
:param submodel: For main (pipeline models), the submodel to fetch.
|
||||
:param context: Invocation context used for event reporting
|
||||
|
||||
Exceptions: UnknownModelException -- model with this key not known
|
||||
NotImplementedException -- a model loader was not provided at initialization time
|
||||
"""
|
||||
if not self._loader:
|
||||
raise NotImplementedError(f"Class {self.__class__} was not initialized with a model loader")
|
||||
# we can emit model loading events if we are executing with access to the invocation context
|
||||
|
||||
model_config = self.get_model(key)
|
||||
return self._loader.load_model(model_config, submodel_type)
|
||||
if context:
|
||||
self._emit_load_event(
|
||||
context=context,
|
||||
model_config=model_config,
|
||||
)
|
||||
loaded_model = self._loader.load_model(model_config, submodel)
|
||||
if context:
|
||||
self._emit_load_event(
|
||||
context=context,
|
||||
model_config=model_config,
|
||||
loaded=True,
|
||||
)
|
||||
return loaded_model
|
||||
|
||||
def load_model_by_attr(
|
||||
self,
|
||||
model_name: str,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
submodel: Optional[SubModelType] = None,
|
||||
context: Optional[InvocationContext] = None,
|
||||
) -> LoadedModel:
|
||||
"""
|
||||
Load the indicated model into memory and return a LoadedModel object.
|
||||
|
||||
This is provided for API compatability with the get_model() method
|
||||
in the original model manager. However, note that LoadedModel is
|
||||
not the same as the original ModelInfo that ws returned.
|
||||
|
||||
:param model_name: Key of model config to be fetched.
|
||||
:param base_model: Base model
|
||||
:param model_type: Type of the model
|
||||
:param submodel: For main (pipeline models), the submodel to fetch
|
||||
:param context: The invocation context.
|
||||
|
||||
Exceptions: UnknownModelException -- model with this key not known
|
||||
NotImplementedException -- a model loader was not provided at initialization time
|
||||
ValueError -- more than one model matches this combination
|
||||
"""
|
||||
configs = self.search_by_attr(model_name, base_model, model_type)
|
||||
if len(configs) == 0:
|
||||
raise UnknownModelException(f"{base_model}/{model_type}/{model_name}: Unknown model")
|
||||
elif len(configs) > 1:
|
||||
raise ValueError(f"{base_model}/{model_type}/{model_name}: More than one model matches.")
|
||||
else:
|
||||
return self.load_model(configs[0].key, submodel)
|
||||
|
||||
def exists(self, key: str) -> bool:
|
||||
"""
|
||||
@ -416,3 +476,29 @@ class ModelRecordServiceSQL(ModelRecordServiceBase):
|
||||
return PaginatedResults(
|
||||
page=page, pages=ceil(total / per_page), per_page=per_page, total=total, items=items
|
||||
)
|
||||
|
||||
def _emit_load_event(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
model_config: AnyModelConfig,
|
||||
loaded: Optional[bool] = False,
|
||||
) -> None:
|
||||
if context.services.queue.is_canceled(context.graph_execution_state_id):
|
||||
raise CanceledException()
|
||||
|
||||
if not loaded:
|
||||
context.services.events.emit_model_load_started(
|
||||
queue_id=context.queue_id,
|
||||
queue_item_id=context.queue_item_id,
|
||||
queue_batch_id=context.queue_batch_id,
|
||||
graph_execution_state_id=context.graph_execution_state_id,
|
||||
model_config=model_config,
|
||||
)
|
||||
else:
|
||||
context.services.events.emit_model_load_completed(
|
||||
queue_id=context.queue_id,
|
||||
queue_item_id=context.queue_item_id,
|
||||
queue_batch_id=context.queue_batch_id,
|
||||
graph_execution_state_id=context.graph_execution_state_id,
|
||||
model_config=model_config,
|
||||
)
|
||||
|
4
invokeai/backend/embeddings/__init__.py
Normal file
4
invokeai/backend/embeddings/__init__.py
Normal file
@ -0,0 +1,4 @@
|
||||
"""Initialization file for invokeai.backend.embeddings modules."""
|
||||
|
||||
# from .model_patcher import ModelPatcher
|
||||
# __all__ = ["ModelPatcher"]
|
12
invokeai/backend/embeddings/embedding_base.py
Normal file
12
invokeai/backend/embeddings/embedding_base.py
Normal file
@ -0,0 +1,12 @@
|
||||
"""Base class for LoRA and Textual Inversion models.
|
||||
|
||||
The EmbeddingRaw class is the base class of LoRAModelRaw and TextualInversionModelRaw,
|
||||
and is used for type checking of calls to the model patcher.
|
||||
|
||||
The use of "Raw" here is a historical artifact, and carried forward in
|
||||
order to avoid confusion.
|
||||
"""
|
||||
|
||||
|
||||
class EmbeddingModelRaw:
|
||||
"""Base class for LoRA and Textual Inversion models."""
|
@ -11,6 +11,8 @@ from typing_extensions import Self
|
||||
|
||||
from invokeai.backend.model_manager import BaseModelType
|
||||
|
||||
from .embedding_base import EmbeddingModelRaw
|
||||
|
||||
|
||||
class LoRALayerBase:
|
||||
# rank: Optional[int]
|
||||
@ -317,7 +319,7 @@ class FullLayer(LoRALayerBase):
|
||||
self,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
) -> None:
|
||||
super().to(device=device, dtype=dtype)
|
||||
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
@ -367,7 +369,7 @@ AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
|
||||
|
||||
|
||||
# TODO: rename all methods used in model logic with Info postfix and remove here Raw postfix
|
||||
class LoRAModelRaw: # (torch.nn.Module):
|
||||
class LoRAModelRaw(EmbeddingModelRaw): # (torch.nn.Module):
|
||||
_name: str
|
||||
layers: Dict[str, AnyLoRALayer]
|
||||
|
||||
@ -471,16 +473,16 @@ class LoRAModelRaw: # (torch.nn.Module):
|
||||
file_path = Path(file_path)
|
||||
|
||||
model = cls(
|
||||
name=file_path.stem, # TODO:
|
||||
name=file_path.stem,
|
||||
layers={},
|
||||
)
|
||||
|
||||
if file_path.suffix == ".safetensors":
|
||||
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
|
||||
sd = load_file(file_path.absolute().as_posix(), device="cpu")
|
||||
else:
|
||||
state_dict = torch.load(file_path, map_location="cpu")
|
||||
sd = torch.load(file_path, map_location="cpu")
|
||||
|
||||
state_dict = cls._group_state(state_dict)
|
||||
state_dict = cls._group_state(sd)
|
||||
|
||||
if base_model == BaseModelType.StableDiffusionXL:
|
||||
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
|
||||
|
@ -4,22 +4,20 @@ from __future__ import annotations
|
||||
|
||||
import pickle
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Generator, List, Optional, Tuple, Union
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from compel.embeddings_provider import BaseTextualInversionManager
|
||||
from diffusers import ModelMixin, OnnxRuntimeModel, UNet2DConditionModel
|
||||
from safetensors.torch import load_file
|
||||
from diffusers import OnnxRuntimeModel, UNet2DConditionModel
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.model_manager import AnyModel
|
||||
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||
|
||||
from .lora import LoRAModelRaw
|
||||
from .textual_inversion import TextualInversionManager, TextualInversionModelRaw
|
||||
|
||||
"""
|
||||
loras = [
|
||||
@ -67,7 +65,7 @@ class ModelPatcher:
|
||||
cls,
|
||||
unet: UNet2DConditionModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
) -> Generator[None, None, None]:
|
||||
) -> None:
|
||||
with cls.apply_lora(unet, loras, "lora_unet_"):
|
||||
yield
|
||||
|
||||
@ -76,8 +74,8 @@ class ModelPatcher:
|
||||
def apply_lora_text_encoder(
|
||||
cls,
|
||||
text_encoder: CLIPTextModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
):
|
||||
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||
) -> None:
|
||||
with cls.apply_lora(text_encoder, loras, "lora_te_"):
|
||||
yield
|
||||
|
||||
@ -87,7 +85,7 @@ class ModelPatcher:
|
||||
cls,
|
||||
text_encoder: CLIPTextModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
):
|
||||
) -> None:
|
||||
with cls.apply_lora(text_encoder, loras, "lora_te1_"):
|
||||
yield
|
||||
|
||||
@ -97,7 +95,7 @@ class ModelPatcher:
|
||||
cls,
|
||||
text_encoder: CLIPTextModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
):
|
||||
) -> None:
|
||||
with cls.apply_lora(text_encoder, loras, "lora_te2_"):
|
||||
yield
|
||||
|
||||
@ -105,10 +103,10 @@ class ModelPatcher:
|
||||
@contextmanager
|
||||
def apply_lora(
|
||||
cls,
|
||||
model: Union[torch.nn.Module, ModelMixin, UNet2DConditionModel],
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
model: AnyModel,
|
||||
loras: Iterator[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
) -> Generator[None, None, None]:
|
||||
) -> None:
|
||||
original_weights = {}
|
||||
try:
|
||||
with torch.no_grad():
|
||||
@ -125,6 +123,7 @@ class ModelPatcher:
|
||||
# 2. From an API perspective, there's no reason that the `ModelPatcher` should be aware of the
|
||||
# intricacies of Stable Diffusion key resolution. It should just expect the input LoRA
|
||||
# weights to have valid keys.
|
||||
assert isinstance(model, torch.nn.Module)
|
||||
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
|
||||
|
||||
# All of the LoRA weight calculations will be done on the same device as the module weight.
|
||||
@ -170,8 +169,8 @@ class ModelPatcher:
|
||||
cls,
|
||||
tokenizer: CLIPTokenizer,
|
||||
text_encoder: CLIPTextModel,
|
||||
ti_list: List[Tuple[str, TextualInversionModel]],
|
||||
) -> Generator[Tuple[CLIPTokenizer, TextualInversionManager], None, None]:
|
||||
ti_list: List[Tuple[str, TextualInversionModelRaw]],
|
||||
) -> Iterator[Tuple[CLIPTokenizer, TextualInversionManager]]:
|
||||
init_tokens_count = None
|
||||
new_tokens_added = None
|
||||
|
||||
@ -201,7 +200,7 @@ class ModelPatcher:
|
||||
trigger += f"-!pad-{i}"
|
||||
return f"<{trigger}>"
|
||||
|
||||
def _get_ti_embedding(model_embeddings: torch.nn.Module, ti: TextualInversionModel) -> torch.Tensor:
|
||||
def _get_ti_embedding(model_embeddings: torch.nn.Module, ti: TextualInversionModelRaw) -> torch.Tensor:
|
||||
# for SDXL models, select the embedding that matches the text encoder's dimensions
|
||||
if ti.embedding_2 is not None:
|
||||
return (
|
||||
@ -229,6 +228,7 @@ class ModelPatcher:
|
||||
model_embeddings = text_encoder.get_input_embeddings()
|
||||
|
||||
for ti_name, ti in ti_list:
|
||||
assert isinstance(ti, TextualInversionModelRaw)
|
||||
ti_embedding = _get_ti_embedding(text_encoder.get_input_embeddings(), ti)
|
||||
|
||||
ti_tokens = []
|
||||
@ -267,7 +267,7 @@ class ModelPatcher:
|
||||
cls,
|
||||
text_encoder: CLIPTextModel,
|
||||
clip_skip: int,
|
||||
) -> Generator[None, None, None]:
|
||||
) -> None:
|
||||
skipped_layers = []
|
||||
try:
|
||||
for _i in range(clip_skip):
|
||||
@ -285,7 +285,7 @@ class ModelPatcher:
|
||||
cls,
|
||||
unet: UNet2DConditionModel,
|
||||
freeu_config: Optional[FreeUConfig] = None,
|
||||
) -> Generator[None, None, None]:
|
||||
) -> None:
|
||||
did_apply_freeu = False
|
||||
try:
|
||||
assert hasattr(unet, "enable_freeu") # mypy doesn't pick up this attribute?
|
||||
@ -301,94 +301,6 @@ class ModelPatcher:
|
||||
unet.disable_freeu()
|
||||
|
||||
|
||||
class TextualInversionModel:
|
||||
embedding: torch.Tensor # [n, 768]|[n, 1280]
|
||||
embedding_2: Optional[torch.Tensor] = None # [n, 768]|[n, 1280] - for SDXL models
|
||||
|
||||
@classmethod
|
||||
def from_checkpoint(
|
||||
cls,
|
||||
file_path: Union[str, Path],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
) -> Self:
|
||||
if not isinstance(file_path, Path):
|
||||
file_path = Path(file_path)
|
||||
|
||||
result = cls() # TODO:
|
||||
|
||||
if file_path.suffix == ".safetensors":
|
||||
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
|
||||
else:
|
||||
state_dict = torch.load(file_path, map_location="cpu")
|
||||
|
||||
# both v1 and v2 format embeddings
|
||||
# difference mostly in metadata
|
||||
if "string_to_param" in state_dict:
|
||||
if len(state_dict["string_to_param"]) > 1:
|
||||
print(
|
||||
f'Warn: Embedding "{file_path.name}" contains multiple tokens, which is not supported. The first',
|
||||
" token will be used.",
|
||||
)
|
||||
|
||||
result.embedding = next(iter(state_dict["string_to_param"].values()))
|
||||
|
||||
# v3 (easynegative)
|
||||
elif "emb_params" in state_dict:
|
||||
result.embedding = state_dict["emb_params"]
|
||||
|
||||
# v5(sdxl safetensors file)
|
||||
elif "clip_g" in state_dict and "clip_l" in state_dict:
|
||||
result.embedding = state_dict["clip_g"]
|
||||
result.embedding_2 = state_dict["clip_l"]
|
||||
|
||||
# v4(diffusers bin files)
|
||||
else:
|
||||
result.embedding = next(iter(state_dict.values()))
|
||||
|
||||
if len(result.embedding.shape) == 1:
|
||||
result.embedding = result.embedding.unsqueeze(0)
|
||||
|
||||
if not isinstance(result.embedding, torch.Tensor):
|
||||
raise ValueError(f"Invalid embeddings file: {file_path.name}")
|
||||
|
||||
return result
|
||||
|
||||
|
||||
# no type hints for BaseTextualInversionManager?
|
||||
class TextualInversionManager(BaseTextualInversionManager): # type: ignore
|
||||
pad_tokens: Dict[int, List[int]]
|
||||
tokenizer: CLIPTokenizer
|
||||
|
||||
def __init__(self, tokenizer: CLIPTokenizer):
|
||||
self.pad_tokens = {}
|
||||
self.tokenizer = tokenizer
|
||||
|
||||
def expand_textual_inversion_token_ids_if_necessary(self, token_ids: list[int]) -> list[int]:
|
||||
if len(self.pad_tokens) == 0:
|
||||
return token_ids
|
||||
|
||||
if token_ids[0] == self.tokenizer.bos_token_id:
|
||||
raise ValueError("token_ids must not start with bos_token_id")
|
||||
if token_ids[-1] == self.tokenizer.eos_token_id:
|
||||
raise ValueError("token_ids must not end with eos_token_id")
|
||||
|
||||
new_token_ids = []
|
||||
for token_id in token_ids:
|
||||
new_token_ids.append(token_id)
|
||||
if token_id in self.pad_tokens:
|
||||
new_token_ids.extend(self.pad_tokens[token_id])
|
||||
|
||||
# Do not exceed the max model input size
|
||||
# The -2 here is compensating for compensate compel.embeddings_provider.get_token_ids(),
|
||||
# which first removes and then adds back the start and end tokens.
|
||||
max_length = list(self.tokenizer.max_model_input_sizes.values())[0] - 2
|
||||
if len(new_token_ids) > max_length:
|
||||
new_token_ids = new_token_ids[0:max_length]
|
||||
|
||||
return new_token_ids
|
||||
|
||||
|
||||
class ONNXModelPatcher:
|
||||
@classmethod
|
||||
@contextmanager
|
||||
@ -396,7 +308,7 @@ class ONNXModelPatcher:
|
||||
cls,
|
||||
unet: OnnxRuntimeModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
) -> Generator[None, None, None]:
|
||||
) -> None:
|
||||
with cls.apply_lora(unet, loras, "lora_unet_"):
|
||||
yield
|
||||
|
||||
@ -406,7 +318,7 @@ class ONNXModelPatcher:
|
||||
cls,
|
||||
text_encoder: OnnxRuntimeModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
) -> Generator[None, None, None]:
|
||||
) -> None:
|
||||
with cls.apply_lora(text_encoder, loras, "lora_te_"):
|
||||
yield
|
||||
|
||||
@ -419,7 +331,7 @@ class ONNXModelPatcher:
|
||||
model: IAIOnnxRuntimeModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
) -> Generator[None, None, None]:
|
||||
) -> None:
|
||||
from .models.base import IAIOnnxRuntimeModel
|
||||
|
||||
if not isinstance(model, IAIOnnxRuntimeModel):
|
||||
@ -506,7 +418,7 @@ class ONNXModelPatcher:
|
||||
tokenizer: CLIPTokenizer,
|
||||
text_encoder: IAIOnnxRuntimeModel,
|
||||
ti_list: List[Tuple[str, Any]],
|
||||
) -> Generator[Tuple[CLIPTokenizer, TextualInversionManager], None, None]:
|
||||
) -> Iterator[Tuple[CLIPTokenizer, TextualInversionManager]]:
|
||||
from .models.base import IAIOnnxRuntimeModel
|
||||
|
||||
if not isinstance(text_encoder, IAIOnnxRuntimeModel):
|
||||
|
100
invokeai/backend/embeddings/textual_inversion.py
Normal file
100
invokeai/backend/embeddings/textual_inversion.py
Normal file
@ -0,0 +1,100 @@
|
||||
"""Textual Inversion wrapper class."""
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
from compel.embeddings_provider import BaseTextualInversionManager
|
||||
from safetensors.torch import load_file
|
||||
from transformers import CLIPTokenizer
|
||||
from typing_extensions import Self
|
||||
|
||||
from .embedding_base import EmbeddingModelRaw
|
||||
|
||||
|
||||
class TextualInversionModelRaw(EmbeddingModelRaw):
|
||||
embedding: torch.Tensor # [n, 768]|[n, 1280]
|
||||
embedding_2: Optional[torch.Tensor] = None # [n, 768]|[n, 1280] - for SDXL models
|
||||
|
||||
@classmethod
|
||||
def from_checkpoint(
|
||||
cls,
|
||||
file_path: Union[str, Path],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
) -> Self:
|
||||
if not isinstance(file_path, Path):
|
||||
file_path = Path(file_path)
|
||||
|
||||
result = cls() # TODO:
|
||||
|
||||
if file_path.suffix == ".safetensors":
|
||||
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
|
||||
else:
|
||||
state_dict = torch.load(file_path, map_location="cpu")
|
||||
|
||||
# both v1 and v2 format embeddings
|
||||
# difference mostly in metadata
|
||||
if "string_to_param" in state_dict:
|
||||
if len(state_dict["string_to_param"]) > 1:
|
||||
print(
|
||||
f'Warn: Embedding "{file_path.name}" contains multiple tokens, which is not supported. The first',
|
||||
" token will be used.",
|
||||
)
|
||||
|
||||
result.embedding = next(iter(state_dict["string_to_param"].values()))
|
||||
|
||||
# v3 (easynegative)
|
||||
elif "emb_params" in state_dict:
|
||||
result.embedding = state_dict["emb_params"]
|
||||
|
||||
# v5(sdxl safetensors file)
|
||||
elif "clip_g" in state_dict and "clip_l" in state_dict:
|
||||
result.embedding = state_dict["clip_g"]
|
||||
result.embedding_2 = state_dict["clip_l"]
|
||||
|
||||
# v4(diffusers bin files)
|
||||
else:
|
||||
result.embedding = next(iter(state_dict.values()))
|
||||
|
||||
if len(result.embedding.shape) == 1:
|
||||
result.embedding = result.embedding.unsqueeze(0)
|
||||
|
||||
if not isinstance(result.embedding, torch.Tensor):
|
||||
raise ValueError(f"Invalid embeddings file: {file_path.name}")
|
||||
|
||||
return result
|
||||
|
||||
|
||||
# no type hints for BaseTextualInversionManager?
|
||||
class TextualInversionManager(BaseTextualInversionManager): # type: ignore
|
||||
pad_tokens: Dict[int, List[int]]
|
||||
tokenizer: CLIPTokenizer
|
||||
|
||||
def __init__(self, tokenizer: CLIPTokenizer):
|
||||
self.pad_tokens = {}
|
||||
self.tokenizer = tokenizer
|
||||
|
||||
def expand_textual_inversion_token_ids_if_necessary(self, token_ids: list[int]) -> list[int]:
|
||||
if len(self.pad_tokens) == 0:
|
||||
return token_ids
|
||||
|
||||
if token_ids[0] == self.tokenizer.bos_token_id:
|
||||
raise ValueError("token_ids must not start with bos_token_id")
|
||||
if token_ids[-1] == self.tokenizer.eos_token_id:
|
||||
raise ValueError("token_ids must not end with eos_token_id")
|
||||
|
||||
new_token_ids = []
|
||||
for token_id in token_ids:
|
||||
new_token_ids.append(token_id)
|
||||
if token_id in self.pad_tokens:
|
||||
new_token_ids.extend(self.pad_tokens[token_id])
|
||||
|
||||
# Do not exceed the max model input size
|
||||
# The -2 here is compensating for compensate compel.embeddings_provider.get_token_ids(),
|
||||
# which first removes and then adds back the start and end tokens.
|
||||
max_length = list(self.tokenizer.max_model_input_sizes.values())[0] - 2
|
||||
if len(new_token_ids) > max_length:
|
||||
new_token_ids = new_token_ids[0:max_length]
|
||||
|
||||
return new_token_ids
|
@ -241,10 +241,11 @@ class InstallHelper(object):
|
||||
if match := re.match(f"^([^/]+/[^/]+?)(?::({variants}))?$", model_path_id_or_url):
|
||||
repo_id = match.group(1)
|
||||
repo_variant = ModelRepoVariant(match.group(2)) if match.group(2) else None
|
||||
subfolder = Path(model_info.subfolder) if model_info.subfolder else None
|
||||
return HFModelSource(
|
||||
repo_id=repo_id,
|
||||
access_token=HfFolder.get_token(),
|
||||
subfolder=model_info.subfolder,
|
||||
subfolder=subfolder,
|
||||
variant=repo_variant,
|
||||
)
|
||||
if re.match(r"^(http|https):", model_path_id_or_url):
|
||||
|
@ -30,8 +30,11 @@ from typing_extensions import Annotated, Any, Dict
|
||||
|
||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||
|
||||
from ..embeddings.embedding_base import EmbeddingModelRaw
|
||||
from ..ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
||||
|
||||
AnyModel = Union[ModelMixin, torch.nn.Module, IAIOnnxRuntimeModel, IPAdapter, IPAdapterPlus, EmbeddingModelRaw]
|
||||
|
||||
|
||||
class InvalidModelConfigException(Exception):
|
||||
"""Exception for when config parser doesn't recognized this combination of model type and format."""
|
||||
@ -299,7 +302,7 @@ AnyModelConfig = Union[
|
||||
]
|
||||
|
||||
AnyModelConfigValidator = TypeAdapter(AnyModelConfig)
|
||||
AnyModel = Union[ModelMixin, torch.nn.Module, IAIOnnxRuntimeModel, IPAdapter, IPAdapterPlus]
|
||||
|
||||
|
||||
# IMPLEMENTATION NOTE:
|
||||
# The preferred alternative to the above is a discriminated Union as shown
|
||||
|
@ -18,8 +18,8 @@ from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Optional, Tuple, Type
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
|
||||
from invokeai.backend.model_manager.config import VaeCheckpointConfig, VaeDiffusersConfig
|
||||
from invokeai.backend.model_manager import AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
|
||||
from invokeai.backend.model_manager.config import AnyModel, VaeCheckpointConfig, VaeDiffusersConfig
|
||||
from invokeai.backend.model_manager.load.convert_cache.convert_cache_base import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
@ -19,7 +19,7 @@ from invokeai.backend.model_manager import (
|
||||
)
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import CacheStats, ModelCacheBase, ModelLockerBase
|
||||
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data, calc_model_size_by_fs
|
||||
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
||||
from invokeai.backend.util.devices import choose_torch_device, torch_dtype
|
||||
@ -71,7 +71,7 @@ class ModelLoader(ModelLoaderBase):
|
||||
model_path, model_config, submodel_type = self._get_model_path(model_config, submodel_type)
|
||||
|
||||
if not model_path.exists():
|
||||
raise InvalidModelConfigException(f"Files for model 'model_config.name' not found at {model_path}")
|
||||
raise InvalidModelConfigException(f"Files for model '{model_config.name}' not found at {model_path}")
|
||||
|
||||
model_path = self._convert_if_needed(model_config, model_path, submodel_type)
|
||||
locker = self._load_if_needed(model_config, model_path, submodel_type)
|
||||
|
@ -1,4 +1,6 @@
|
||||
"""Init file for ModelCache."""
|
||||
|
||||
from .model_cache_base import ModelCacheBase, CacheStats # noqa F401
|
||||
from .model_cache_default import ModelCache # noqa F401
|
||||
|
||||
_all__ = ["ModelCacheBase", "ModelCache"]
|
||||
_all__ = ["ModelCacheBase", "ModelCache", "CacheStats"]
|
||||
|
@ -8,13 +8,13 @@ model will be cleared and (re)loaded from disk when next needed.
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from dataclasses import dataclass, field
|
||||
from logging import Logger
|
||||
from typing import Generic, Optional, TypeVar
|
||||
from typing import Dict, Generic, Optional, TypeVar
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.model_manager import AnyModel, SubModelType
|
||||
from invokeai.backend.model_manager.config import AnyModel, SubModelType
|
||||
|
||||
|
||||
class ModelLockerBase(ABC):
|
||||
@ -65,6 +65,19 @@ class CacheRecord(Generic[T]):
|
||||
return self._locks > 0
|
||||
|
||||
|
||||
@dataclass
|
||||
class CacheStats(object):
|
||||
"""Collect statistics on cache performance."""
|
||||
|
||||
hits: int = 0 # cache hits
|
||||
misses: int = 0 # cache misses
|
||||
high_watermark: int = 0 # amount of cache used
|
||||
in_cache: int = 0 # number of models in cache
|
||||
cleared: int = 0 # number of models cleared to make space
|
||||
cache_size: int = 0 # total size of cache
|
||||
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)
|
||||
|
||||
|
||||
class ModelCacheBase(ABC, Generic[T]):
|
||||
"""Virtual base class for RAM model cache."""
|
||||
|
||||
@ -98,10 +111,22 @@ class ModelCacheBase(ABC, Generic[T]):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def move_model_to_device(self, cache_entry: CacheRecord, device: torch.device) -> None:
|
||||
def move_model_to_device(self, cache_entry: CacheRecord[AnyModel], device: torch.device) -> None:
|
||||
"""Move model into the indicated device."""
|
||||
pass
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def stats(self) -> CacheStats:
|
||||
"""Return collected CacheStats object."""
|
||||
pass
|
||||
|
||||
@stats.setter
|
||||
@abstractmethod
|
||||
def stats(self, stats: CacheStats) -> None:
|
||||
"""Set the CacheStats object for collectin cache statistics."""
|
||||
pass
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def logger(self) -> Logger:
|
||||
|
@ -24,19 +24,17 @@ import math
|
||||
import sys
|
||||
import time
|
||||
from contextlib import suppress
|
||||
from dataclasses import dataclass, field
|
||||
from logging import Logger
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.model_manager import SubModelType
|
||||
from invokeai.backend.model_manager.load.load_base import AnyModel
|
||||
from invokeai.backend.model_manager import AnyModel, SubModelType
|
||||
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
|
||||
from invokeai.backend.util.devices import choose_torch_device
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
|
||||
from .model_cache_base import CacheRecord, ModelCacheBase
|
||||
from .model_cache_base import CacheRecord, CacheStats, ModelCacheBase
|
||||
from .model_locker import ModelLocker, ModelLockerBase
|
||||
|
||||
if choose_torch_device() == torch.device("mps"):
|
||||
@ -56,20 +54,6 @@ GIG = 1073741824
|
||||
MB = 2**20
|
||||
|
||||
|
||||
@dataclass
|
||||
class CacheStats(object):
|
||||
"""Collect statistics on cache performance."""
|
||||
|
||||
hits: int = 0 # cache hits
|
||||
misses: int = 0 # cache misses
|
||||
high_watermark: int = 0 # amount of cache used
|
||||
in_cache: int = 0 # number of models in cache
|
||||
cleared: int = 0 # number of models cleared to make space
|
||||
cache_size: int = 0 # total size of cache
|
||||
# {submodel_key => size}
|
||||
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)
|
||||
|
||||
|
||||
class ModelCache(ModelCacheBase[AnyModel]):
|
||||
"""Implementation of ModelCacheBase."""
|
||||
|
||||
@ -110,7 +94,7 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
self._logger = logger or InvokeAILogger.get_logger(self.__class__.__name__)
|
||||
self._log_memory_usage = log_memory_usage or self._logger.level == logging.DEBUG
|
||||
# used for stats collection
|
||||
self.stats = CacheStats()
|
||||
self._stats: Optional[CacheStats] = None
|
||||
|
||||
self._cached_models: Dict[str, CacheRecord[AnyModel]] = {}
|
||||
self._cache_stack: List[str] = []
|
||||
@ -140,6 +124,16 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
"""Return the cap on cache size."""
|
||||
return self._max_cache_size
|
||||
|
||||
@property
|
||||
def stats(self) -> Optional[CacheStats]:
|
||||
"""Return collected CacheStats object."""
|
||||
return self._stats
|
||||
|
||||
@stats.setter
|
||||
def stats(self, stats: CacheStats) -> None:
|
||||
"""Set the CacheStats object for collectin cache statistics."""
|
||||
self._stats = stats
|
||||
|
||||
def cache_size(self) -> int:
|
||||
"""Get the total size of the models currently cached."""
|
||||
total = 0
|
||||
@ -189,21 +183,24 @@ class ModelCache(ModelCacheBase[AnyModel]):
|
||||
"""
|
||||
key = self._make_cache_key(key, submodel_type)
|
||||
if key in self._cached_models:
|
||||
self.stats.hits += 1
|
||||
if self.stats:
|
||||
self.stats.hits += 1
|
||||
else:
|
||||
self.stats.misses += 1
|
||||
if self.stats:
|
||||
self.stats.misses += 1
|
||||
raise IndexError(f"The model with key {key} is not in the cache.")
|
||||
|
||||
cache_entry = self._cached_models[key]
|
||||
|
||||
# more stats
|
||||
stats_name = stats_name or key
|
||||
self.stats.cache_size = int(self._max_cache_size * GIG)
|
||||
self.stats.high_watermark = max(self.stats.high_watermark, self.cache_size())
|
||||
self.stats.in_cache = len(self._cached_models)
|
||||
self.stats.loaded_model_sizes[stats_name] = max(
|
||||
self.stats.loaded_model_sizes.get(stats_name, 0), cache_entry.size
|
||||
)
|
||||
if self.stats:
|
||||
stats_name = stats_name or key
|
||||
self.stats.cache_size = int(self._max_cache_size * GIG)
|
||||
self.stats.high_watermark = max(self.stats.high_watermark, self.cache_size())
|
||||
self.stats.in_cache = len(self._cached_models)
|
||||
self.stats.loaded_model_sizes[stats_name] = max(
|
||||
self.stats.loaded_model_sizes.get(stats_name, 0), cache_entry.size
|
||||
)
|
||||
|
||||
# this moves the entry to the top (right end) of the stack
|
||||
with suppress(Exception):
|
||||
|
@ -5,7 +5,7 @@
|
||||
from pathlib import Path
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from invokeai.backend.embeddings.model_patcher import TextualInversionModel as TextualInversionModelRaw
|
||||
from invokeai.backend.embeddings.textual_inversion import TextualInversionModelRaw
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
|
@ -4,3 +4,12 @@ Initialization file for the invokeai.backend.stable_diffusion package
|
||||
from .diffusers_pipeline import PipelineIntermediateState, StableDiffusionGeneratorPipeline # noqa: F401
|
||||
from .diffusion import InvokeAIDiffuserComponent # noqa: F401
|
||||
from .diffusion.cross_attention_map_saving import AttentionMapSaver # noqa: F401
|
||||
from .seamless import set_seamless # noqa: F401
|
||||
|
||||
__all__ = [
|
||||
"PipelineIntermediateState",
|
||||
"StableDiffusionGeneratorPipeline",
|
||||
"InvokeAIDiffuserComponent",
|
||||
"AttentionMapSaver",
|
||||
"set_seamless",
|
||||
]
|
||||
|
102
invokeai/backend/stable_diffusion/seamless.py
Normal file
102
invokeai/backend/stable_diffusion/seamless.py
Normal file
@ -0,0 +1,102 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from contextlib import contextmanager
|
||||
from typing import List, Union
|
||||
|
||||
import torch.nn as nn
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
|
||||
|
||||
def _conv_forward_asymmetric(self, input, weight, bias):
|
||||
"""
|
||||
Patch for Conv2d._conv_forward that supports asymmetric padding
|
||||
"""
|
||||
working = nn.functional.pad(input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"])
|
||||
working = nn.functional.pad(working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"])
|
||||
return nn.functional.conv2d(
|
||||
working,
|
||||
weight,
|
||||
bias,
|
||||
self.stride,
|
||||
nn.modules.utils._pair(0),
|
||||
self.dilation,
|
||||
self.groups,
|
||||
)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL], seamless_axes: List[str]):
|
||||
try:
|
||||
to_restore = []
|
||||
|
||||
for m_name, m in model.named_modules():
|
||||
if isinstance(model, UNet2DConditionModel):
|
||||
if ".attentions." in m_name:
|
||||
continue
|
||||
|
||||
if ".resnets." in m_name:
|
||||
if ".conv2" in m_name:
|
||||
continue
|
||||
if ".conv_shortcut" in m_name:
|
||||
continue
|
||||
|
||||
"""
|
||||
if isinstance(model, UNet2DConditionModel):
|
||||
if False and ".upsamplers." in m_name:
|
||||
continue
|
||||
|
||||
if False and ".downsamplers." in m_name:
|
||||
continue
|
||||
|
||||
if True and ".resnets." in m_name:
|
||||
if True and ".conv1" in m_name:
|
||||
if False and "down_blocks" in m_name:
|
||||
continue
|
||||
if False and "mid_block" in m_name:
|
||||
continue
|
||||
if False and "up_blocks" in m_name:
|
||||
continue
|
||||
|
||||
if True and ".conv2" in m_name:
|
||||
continue
|
||||
|
||||
if True and ".conv_shortcut" in m_name:
|
||||
continue
|
||||
|
||||
if True and ".attentions." in m_name:
|
||||
continue
|
||||
|
||||
if False and m_name in ["conv_in", "conv_out"]:
|
||||
continue
|
||||
"""
|
||||
|
||||
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
||||
m.asymmetric_padding_mode = {}
|
||||
m.asymmetric_padding = {}
|
||||
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
|
||||
m.asymmetric_padding["x"] = (
|
||||
m._reversed_padding_repeated_twice[0],
|
||||
m._reversed_padding_repeated_twice[1],
|
||||
0,
|
||||
0,
|
||||
)
|
||||
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
|
||||
m.asymmetric_padding["y"] = (
|
||||
0,
|
||||
0,
|
||||
m._reversed_padding_repeated_twice[2],
|
||||
m._reversed_padding_repeated_twice[3],
|
||||
)
|
||||
|
||||
to_restore.append((m, m._conv_forward))
|
||||
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
|
||||
|
||||
yield
|
||||
|
||||
finally:
|
||||
for module, orig_conv_forward in to_restore:
|
||||
module._conv_forward = orig_conv_forward
|
||||
if hasattr(module, "asymmetric_padding_mode"):
|
||||
del module.asymmetric_padding_mode
|
||||
if hasattr(module, "asymmetric_padding"):
|
||||
del module.asymmetric_padding
|
28
invokeai/backend/util/silence_warnings.py
Normal file
28
invokeai/backend/util/silence_warnings.py
Normal file
@ -0,0 +1,28 @@
|
||||
"""Context class to silence transformers and diffusers warnings."""
|
||||
import warnings
|
||||
from typing import Any
|
||||
|
||||
from diffusers import logging as diffusers_logging
|
||||
from transformers import logging as transformers_logging
|
||||
|
||||
|
||||
class SilenceWarnings(object):
|
||||
"""Use in context to temporarily turn off warnings from transformers & diffusers modules.
|
||||
|
||||
with SilenceWarnings():
|
||||
# do something
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.transformers_verbosity = transformers_logging.get_verbosity()
|
||||
self.diffusers_verbosity = diffusers_logging.get_verbosity()
|
||||
|
||||
def __enter__(self) -> None:
|
||||
transformers_logging.set_verbosity_error()
|
||||
diffusers_logging.set_verbosity_error()
|
||||
warnings.simplefilter("ignore")
|
||||
|
||||
def __exit__(self, *args: Any) -> None:
|
||||
transformers_logging.set_verbosity(self.transformers_verbosity)
|
||||
diffusers_logging.set_verbosity(self.diffusers_verbosity)
|
||||
warnings.simplefilter("default")
|
@ -23,7 +23,7 @@ import torch
|
||||
from npyscreen import widget
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.model_install import ModelInstallService
|
||||
from invokeai.app.services.model_install import ModelInstallServiceBase
|
||||
from invokeai.backend.install.install_helper import InstallHelper, InstallSelections, UnifiedModelInfo
|
||||
from invokeai.backend.model_manager import ModelType
|
||||
from invokeai.backend.util import choose_precision, choose_torch_device
|
||||
@ -499,7 +499,7 @@ class AddModelApplication(npyscreen.NPSAppManaged): # type: ignore
|
||||
)
|
||||
|
||||
|
||||
def list_models(installer: ModelInstallService, model_type: ModelType):
|
||||
def list_models(installer: ModelInstallServiceBase, model_type: ModelType):
|
||||
"""Print out all models of type model_type."""
|
||||
models = installer.record_store.search_by_attr(model_type=model_type)
|
||||
print(f"Installed models of type `{model_type}`:")
|
||||
@ -527,7 +527,9 @@ def select_and_download_models(opt: Namespace) -> None:
|
||||
install_helper.add_or_delete(selections)
|
||||
|
||||
elif opt.default_only:
|
||||
selections = InstallSelections(install_models=[install_helper.default_model()])
|
||||
default_model = install_helper.default_model()
|
||||
assert default_model is not None
|
||||
selections = InstallSelections(install_models=[default_model])
|
||||
install_helper.add_or_delete(selections)
|
||||
|
||||
elif opt.yes_to_all:
|
||||
|
@ -192,6 +192,7 @@ def sdxl_base_files() -> List[Path]:
|
||||
"text_encoder/model.onnx",
|
||||
"text_encoder_2/config.json",
|
||||
"text_encoder_2/model.onnx",
|
||||
"text_encoder_2/model.onnx_data",
|
||||
"tokenizer/merges.txt",
|
||||
"tokenizer/special_tokens_map.json",
|
||||
"tokenizer/tokenizer_config.json",
|
||||
@ -202,6 +203,7 @@ def sdxl_base_files() -> List[Path]:
|
||||
"tokenizer_2/vocab.json",
|
||||
"unet/config.json",
|
||||
"unet/model.onnx",
|
||||
"unet/model.onnx_data",
|
||||
"vae_decoder/config.json",
|
||||
"vae_decoder/model.onnx",
|
||||
"vae_encoder/config.json",
|
||||
|
@ -2,7 +2,7 @@ from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
from invokeai.backend import BaseModelType
|
||||
from invokeai.backend.model_manager import BaseModelType, ModelRepoVariant
|
||||
from invokeai.backend.model_manager.probe import VaeFolderProbe
|
||||
|
||||
|
||||
@ -21,10 +21,10 @@ def test_get_base_type(vae_path: str, expected_type: BaseModelType, datadir: Pat
|
||||
base_type = probe.get_base_type()
|
||||
assert base_type == expected_type
|
||||
repo_variant = probe.get_repo_variant()
|
||||
assert repo_variant == "default"
|
||||
assert repo_variant == ModelRepoVariant.DEFAULT
|
||||
|
||||
|
||||
def test_repo_variant(datadir: Path):
|
||||
probe = VaeFolderProbe(datadir / "vae" / "taesdxl-fp16")
|
||||
repo_variant = probe.get_repo_variant()
|
||||
assert repo_variant == "fp16"
|
||||
assert repo_variant == ModelRepoVariant.FP16
|
||||
|
Loading…
Reference in New Issue
Block a user