InvokeAI/invokeai/app/invocations/compel.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

711 lines
26 KiB
Python
Raw Normal View History

from typing import Literal, Optional, Union, List, Annotated
from pydantic import BaseModel, Field
2023-05-30 23:12:27 +00:00
import re
import torch
2023-07-17 22:49:45 +00:00
from compel import Compel, ReturnedEmbeddingsType
from compel.prompt_parser import (Blend, Conjunction,
CrossAttentionControlSubstitute,
FlattenedPrompt, Fragment)
2023-06-07 02:18:41 +00:00
from ...backend.util.devices import torch_dtype
2023-07-03 16:17:45 +00:00
from ...backend.model_management import ModelType
2023-07-05 16:46:00 +00:00
from ...backend.model_management.models import ModelNotFoundException
2023-05-30 23:12:27 +00:00
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .model import ClipField
from dataclasses import dataclass
class ConditioningField(BaseModel):
conditioning_name: Optional[str] = Field(
default=None, description="The name of conditioning data")
class Config:
schema_extra = {"required": ["conditioning_name"]}
@dataclass
class BasicConditioningInfo:
#type: Literal["basic_conditioning"] = "basic_conditioning"
embeds: torch.Tensor
extra_conditioning: Optional[InvokeAIDiffuserComponent.ExtraConditioningInfo]
# weight: float
# mode: ConditioningAlgo
@dataclass
class SDXLConditioningInfo(BasicConditioningInfo):
#type: Literal["sdxl_conditioning"] = "sdxl_conditioning"
pooled_embeds: torch.Tensor
add_time_ids: torch.Tensor
ConditioningInfoType = Annotated[
Union[BasicConditioningInfo, SDXLConditioningInfo],
Field(discriminator="type")
]
@dataclass
class ConditioningFieldData:
conditionings: List[Union[BasicConditioningInfo, SDXLConditioningInfo]]
#unconditioned: Optional[torch.Tensor]
#class ConditioningAlgo(str, Enum):
# Compose = "compose"
# ComposeEx = "compose_ex"
# PerpNeg = "perp_neg"
class CompelOutput(BaseInvocationOutput):
"""Compel parser output"""
#fmt: off
type: Literal["compel_output"] = "compel_output"
2023-05-05 18:09:29 +00:00
conditioning: ConditioningField = Field(default=None, description="Conditioning")
#fmt: on
class CompelInvocation(BaseInvocation):
2023-05-05 18:09:29 +00:00
"""Parse prompt using compel package to conditioning."""
type: Literal["compel"] = "compel"
2023-05-05 18:09:29 +00:00
prompt: str = Field(default="", description="Prompt")
clip: ClipField = Field(None, description="Clip to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
2023-05-05 18:30:16 +00:00
"title": "Prompt (Compel)",
2023-05-05 18:09:29 +00:00
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
tokenizer_info = context.services.model_manager.get_model(
**self.clip.tokenizer.dict(), context=context,
)
2023-05-30 23:12:27 +00:00
text_encoder_info = context.services.model_manager.get_model(
**self.clip.text_encoder.dict(), context=context,
2023-05-30 23:12:27 +00:00
)
def _lora_loader():
for lora in self.clip.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=self.clip.text_encoder.base_model,
model_type=ModelType.TextualInversion,
context=context,
).context.model
2023-05-30 23:12:27 +00:00
)
2023-07-05 16:46:00 +00:00
except ModelNotFoundException:
# print(e)
#import traceback
2023-07-05 16:46:00 +00:00
#print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
2023-07-06 14:39:49 +00:00
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),\
text_encoder_info as text_encoder:
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True,
)
2023-05-12 01:24:29 +00:00
conjunction = Compel.parse_prompt_string(self.prompt)
prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0]
2023-05-12 01:24:29 +00:00
if context.services.configuration.log_tokenization:
log_tokenization_for_prompt_object(prompt, tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(
prompt)
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(
tokenizer, conjunction),
cross_attention_control_args=options.get(
"cross_attention_control", None),)
2023-07-16 03:24:24 +00:00
conditioning_data = ConditioningFieldData(
conditionings=[
BasicConditioningInfo(
embeds=c,
extra_conditioning=ec,
)
]
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
2023-07-16 03:24:24 +00:00
context.services.latents.save(conditioning_name, conditioning_data)
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
2023-07-17 22:49:45 +00:00
class SDXLPromptInvocationBase:
def run_clip_raw(self, context, clip_field, prompt, get_pooled):
tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(),
)
text_encoder_info = context.services.model_manager.get_model(
**clip_field.text_encoder.dict(),
)
2023-07-17 22:49:45 +00:00
def _lora_loader():
for lora in clip_field.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
2023-07-17 22:49:45 +00:00
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
2023-07-17 22:49:45 +00:00
ti_list = []
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
).context.model
)
except ModelNotFoundException:
# print(e)
#import traceback
#print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),\
text_encoder_info as text_encoder:
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(
text_input_ids.to(text_encoder.device),
output_hidden_states=True,
)
if get_pooled:
c_pooled = prompt_embeds[0]
else:
c_pooled = None
c = prompt_embeds.hidden_states[-2]
2023-07-17 22:49:45 +00:00
del tokenizer
del text_encoder
del tokenizer_info
del text_encoder_info
return c, c_pooled, None
def run_clip_compel(self, context, clip_field, prompt, get_pooled):
tokenizer_info = context.services.model_manager.get_model(
**clip_field.tokenizer.dict(),
)
text_encoder_info = context.services.model_manager.get_model(
**clip_field.text_encoder.dict(),
)
def _lora_loader():
for lora in clip_field.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
ti_list = []
2023-07-17 22:49:45 +00:00
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
name = trigger[1:-1]
try:
ti_list.append(
context.services.model_manager.get_model(
model_name=name,
base_model=clip_field.text_encoder.base_model,
model_type=ModelType.TextualInversion,
).context.model
)
except ModelNotFoundException:
# print(e)
#import traceback
#print(traceback.format_exc())
print(f"Warn: trigger: \"{trigger}\" not found")
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),\
text_encoder_info as text_encoder:
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=ti_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
2023-07-17 22:49:45 +00:00
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
requires_pooled=True,
)
2023-07-17 22:49:45 +00:00
conjunction = Compel.parse_prompt_string(prompt)
if context.services.configuration.log_tokenization:
2023-07-17 22:49:45 +00:00
# TODO: better logging for and syntax
for prompt_obj in conjunction.prompts:
log_tokenization_for_prompt_object(prompt_obj, tokenizer)
2023-07-17 22:49:45 +00:00
# TODO: ask for optimizations? to not run text_encoder twice
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
if get_pooled:
c_pooled = compel.conditioning_provider.get_pooled_embeddings([prompt])
else:
c_pooled = None
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
cross_attention_control_args=options.get("cross_attention_control", None),
)
del tokenizer
del text_encoder
del tokenizer_info
del text_encoder_info
2023-07-17 22:49:45 +00:00
return c, c_pooled, ec
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
type: Literal["sdxl_compel_prompt"] = "sdxl_compel_prompt"
prompt: str = Field(default="", description="Prompt")
style: str = Field(default="", description="Style prompt")
original_width: int = Field(1024, description="")
original_height: int = Field(1024, description="")
crop_top: int = Field(0, description="")
crop_left: int = Field(0, description="")
target_width: int = Field(1024, description="")
target_height: int = Field(1024, description="")
clip1: ClipField = Field(None, description="Clip to use")
clip2: ClipField = Field(None, description="Clip to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "SDXL Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
2023-07-17 22:49:45 +00:00
c1, c1_pooled, ec1 = self.run_clip_compel(context, self.clip1, self.prompt, False)
if self.style.strip() == "":
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.prompt, True)
else:
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True)
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
target_size = (self.target_height, self.target_width)
add_time_ids = torch.tensor([
original_size + crop_coords + target_size
])
conditioning_data = ConditioningFieldData(
conditionings=[
SDXLConditioningInfo(
embeds=torch.cat([c1, c2], dim=-1),
pooled_embeds=c2_pooled,
2023-07-17 22:49:45 +00:00
add_time_ids=add_time_ids,
extra_conditioning=ec1,
)
]
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
2023-07-17 22:49:45 +00:00
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
2023-07-17 22:49:45 +00:00
type: Literal["sdxl_refiner_compel_prompt"] = "sdxl_refiner_compel_prompt"
2023-07-17 22:49:45 +00:00
style: str = Field(default="", description="Style prompt") # TODO: ?
original_width: int = Field(1024, description="")
original_height: int = Field(1024, description="")
crop_top: int = Field(0, description="")
crop_left: int = Field(0, description="")
2023-07-17 22:49:45 +00:00
aesthetic_score: float = Field(6.0, description="")
clip2: ClipField = Field(None, description="Clip to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
2023-07-17 22:49:45 +00:00
"title": "SDXL Refiner Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
}
2023-07-17 22:49:45 +00:00
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True)
2023-07-17 22:49:45 +00:00
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
2023-07-17 22:49:45 +00:00
add_time_ids = torch.tensor([
original_size + crop_coords + (self.aesthetic_score,)
])
2023-07-17 22:49:45 +00:00
conditioning_data = ConditioningFieldData(
conditionings=[
SDXLConditioningInfo(
embeds=c2,
pooled_embeds=c2_pooled,
add_time_ids=add_time_ids,
extra_conditioning=ec2, # or None
)
2023-07-17 22:49:45 +00:00
]
)
2023-07-17 22:49:45 +00:00
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
2023-07-17 22:49:45 +00:00
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
2023-07-17 22:49:45 +00:00
class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
2023-07-18 03:49:23 +00:00
"""Pass unmodified prompt to conditioning without compel processing."""
2023-07-17 22:49:45 +00:00
type: Literal["sdxl_raw_prompt"] = "sdxl_raw_prompt"
prompt: str = Field(default="", description="Prompt")
style: str = Field(default="", description="Style prompt")
original_width: int = Field(1024, description="")
original_height: int = Field(1024, description="")
crop_top: int = Field(0, description="")
crop_left: int = Field(0, description="")
target_width: int = Field(1024, description="")
target_height: int = Field(1024, description="")
clip1: ClipField = Field(None, description="Clip to use")
clip2: ClipField = Field(None, description="Clip to use")
2023-07-17 22:49:45 +00:00
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "SDXL Prompt (Raw)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
2023-07-17 22:49:45 +00:00
c1, c1_pooled, ec1 = self.run_clip_raw(context, self.clip1, self.prompt, False)
if self.style.strip() == "":
2023-07-17 22:49:45 +00:00
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.prompt, True)
else:
2023-07-17 22:49:45 +00:00
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True)
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
target_size = (self.target_height, self.target_width)
add_time_ids = torch.tensor([
original_size + crop_coords + target_size
])
conditioning_data = ConditioningFieldData(
conditionings=[
SDXLConditioningInfo(
embeds=torch.cat([c1, c2], dim=-1),
pooled_embeds=c2_pooled,
add_time_ids=add_time_ids,
extra_conditioning=ec1,
)
]
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
2023-07-17 22:49:45 +00:00
class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
"""Parse prompt using compel package to conditioning."""
type: Literal["sdxl_refiner_raw_prompt"] = "sdxl_refiner_raw_prompt"
style: str = Field(default="", description="Style prompt") # TODO: ?
original_width: int = Field(1024, description="")
original_height: int = Field(1024, description="")
crop_top: int = Field(0, description="")
crop_left: int = Field(0, description="")
aesthetic_score: float = Field(6.0, description="")
clip2: ClipField = Field(None, description="Clip to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "SDXL Refiner Prompt (Raw)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> CompelOutput:
2023-07-17 22:49:45 +00:00
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True)
original_size = (self.original_height, self.original_width)
crop_coords = (self.crop_top, self.crop_left)
add_time_ids = torch.tensor([
original_size + crop_coords + (self.aesthetic_score,)
])
conditioning_data = ConditioningFieldData(
conditionings=[
SDXLConditioningInfo(
embeds=c2,
pooled_embeds=c2_pooled,
add_time_ids=add_time_ids,
extra_conditioning=ec2, # or None
)
]
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
context.services.latents.save(conditioning_name, conditioning_data)
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
2023-07-17 22:49:45 +00:00
2023-07-06 14:39:49 +00:00
class ClipSkipInvocationOutput(BaseInvocationOutput):
"""Clip skip node output"""
type: Literal["clip_skip_output"] = "clip_skip_output"
clip: ClipField = Field(None, description="Clip with skipped layers")
class ClipSkipInvocation(BaseInvocation):
"""Skip layers in clip text_encoder model."""
type: Literal["clip_skip"] = "clip_skip"
clip: ClipField = Field(None, description="Clip to use")
skipped_layers: int = Field(0, description="Number of layers to skip in text_encoder")
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
self.clip.skipped_layers += self.skipped_layers
return ClipSkipInvocationOutput(
clip=self.clip,
)
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction],
truncate_if_too_long=False) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max(
[
get_max_token_count(tokenizer, p, truncate_if_too_long)
for p in blend.prompts
]
)
elif type(prompt) is Conjunction:
conjunction: Conjunction = prompt
return sum(
[
get_max_token_count(tokenizer, p, truncate_if_too_long)
for p in conjunction.prompts
]
)
else:
return len(
get_tokens_for_prompt_object(
tokenizer, prompt, truncate_if_too_long))
def get_tokens_for_prompt_object(
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> List[str]:
if type(parsed_prompt) is Blend:
raise ValueError(
"Blend is not supported here - you need to get tokens for each of its .children"
)
text_fragments = [
x.text
if type(x) is Fragment
else (
" ".join([f.text for f in x.original])
if type(x) is CrossAttentionControlSubstitute
else str(x)
)
for x in parsed_prompt.children
]
text = " ".join(text_fragments)
tokens = tokenizer.tokenize(text)
if truncate_if_too_long:
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
tokens = tokens[0:max_tokens_length]
return tokens
def log_tokenization_for_conjunction(
c: Conjunction, tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or ""
for i, p in enumerate(c.prompts):
if len(c.prompts) > 1:
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
else:
this_display_label_prefix = display_label_prefix
log_tokenization_for_prompt_object(
p,
tokenizer,
display_label_prefix=this_display_label_prefix
)
def log_tokenization_for_prompt_object(
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or ""
if type(p) is Blend:
blend: Blend = p
for i, c in enumerate(blend.prompts):
log_tokenization_for_prompt_object(
c,
tokenizer,
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
)
elif type(p) is FlattenedPrompt:
flattened_prompt: FlattenedPrompt = p
if flattened_prompt.wants_cross_attention_control:
original_fragments = []
edited_fragments = []
for f in flattened_prompt.children:
if type(f) is CrossAttentionControlSubstitute:
original_fragments += f.original
edited_fragments += f.edited
else:
original_fragments.append(f)
edited_fragments.append(f)
original_text = " ".join([x.text for x in original_fragments])
log_tokenization_for_text(
original_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap originals)",
)
edited_text = " ".join([x.text for x in edited_fragments])
log_tokenization_for_text(
edited_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap replacements)",
)
else:
text = " ".join([x.text for x in flattened_prompt.children])
log_tokenization_for_text(
text, tokenizer, display_label=display_label_prefix
)
def log_tokenization_for_text(
text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
"""
tokens = tokenizer.tokenize(text)
tokenized = ""
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace("</w>", " ")
# alternate color
s = (usedTokens % 6) + 1
if truncate_if_too_long and i >= tokenizer.model_max_length:
discarded = discarded + f"\x1b[0;3{s};40m{token}"
else:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"{tokenized}\x1b[0m")
if discarded != "":
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
print(f"{discarded}\x1b[0m")