InvokeAI/invokeai/app/api/routers/models.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

292 lines
12 KiB
Python
Raw Normal View History

2023-04-07 02:25:18 +00:00
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and 2023 Kent Keirsey (https://github.com/hipsterusername)
from typing import Literal, Optional, Union
2023-07-05 10:08:47 +00:00
from fastapi import Body, Path, Query, Response
from fastapi.routing import APIRouter
from pydantic import BaseModel, Field, parse_obj_as
2023-07-05 10:08:47 +00:00
from starlette.exceptions import HTTPException
2023-06-11 03:12:21 +00:00
from invokeai.backend import BaseModelType, ModelType
2023-07-03 23:32:54 +00:00
from invokeai.backend.model_management import AddModelResult
2023-07-05 10:08:47 +00:00
from invokeai.backend.model_management.models import (MODEL_CONFIGS,
OPENAPI_MODEL_CONFIGS,
SchedulerPredictionType)
from ..dependencies import ApiDependencies
models_router = APIRouter(prefix="/v1/models", tags=["models"])
class UpdateModelResponse(BaseModel):
2023-07-04 21:26:57 +00:00
model_name: str = Field(description="The name of the new model")
info: Union[tuple(MODEL_CONFIGS)] = Field(description="The model info")
2023-04-06 19:17:48 +00:00
2023-07-03 23:32:54 +00:00
class ImportModelResponse(BaseModel):
location: str = Field(description="The path, repo_id or URL of the imported model")
2023-07-03 23:32:54 +00:00
info: AddModelResult = Field(description="The model info")
2023-07-05 13:05:05 +00:00
class ConvertModelResponse(BaseModel):
name: str = Field(description="The name of the imported model")
info: AddModelResult = Field(description="The model info")
status: str = Field(description="The status of the API response")
class ModelsList(BaseModel):
2023-07-04 21:26:57 +00:00
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
@models_router.get(
2023-07-04 21:26:57 +00:00
"/{base_model}/{model_type}",
operation_id="list_models",
responses={200: {"model": ModelsList }},
)
async def list_models(
2023-07-04 21:26:57 +00:00
base_model: Optional[BaseModelType] = Path(
2023-06-11 03:12:21 +00:00
default=None, description="Base model"
),
2023-07-04 21:26:57 +00:00
model_type: Optional[ModelType] = Path(
2023-06-11 03:12:21 +00:00
default=None, description="The type of model to get"
),
) -> ModelsList:
"""Gets a list of models"""
models_raw = ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)
models = parse_obj_as(ModelsList, { "models": models_raw })
return models
@models_router.patch(
2023-07-04 21:26:57 +00:00
"/{base_model}/{model_type}/{model_name}",
2023-04-06 19:17:48 +00:00
operation_id="update_model",
responses={200: {"description" : "The model was updated successfully"},
404: {"description" : "The model could not be found"},
400: {"description" : "Bad request"}
},
status_code = 200,
response_model = UpdateModelResponse,
2023-04-06 19:17:48 +00:00
)
async def update_model(
2023-07-04 21:26:57 +00:00
base_model: BaseModelType = Path(default='sd-1', description="Base model"),
model_type: ModelType = Path(default='main', description="The type of model"),
model_name: str = Path(default=None, description="model name"),
info: Union[tuple(MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> UpdateModelResponse:
2023-04-06 19:17:48 +00:00
""" Add Model """
try:
ApiDependencies.invoker.services.model_manager.update_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
model_attributes=info.dict()
)
model_response = UpdateModelResponse(
model_name = model_name,
info = ApiDependencies.invoker.services.model_manager.model_info(
model_name=model_name,
base_model=base_model,
model_type=model_type,
)
)
except KeyError as e:
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
2023-04-07 02:25:18 +00:00
2023-04-06 19:17:48 +00:00
return model_response
@models_router.post(
"/",
operation_id="import_model",
2023-07-03 23:32:54 +00:00
responses= {
201: {"description" : "The model imported successfully"},
404: {"description" : "The model could not be found"},
2023-07-05 10:08:47 +00:00
424: {"description" : "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description" : "There is already a model corresponding to this path or repo_id"},
2023-07-03 23:32:54 +00:00
},
status_code=201,
response_model=ImportModelResponse
)
async def import_model(
location: str = Body(description="A model path, repo_id or URL to import"),
prediction_type: Optional[Literal['v_prediction','epsilon','sample']] = \
Body(description='Prediction type for SDv2 checkpoint files', default="v_prediction"),
2023-07-03 23:32:54 +00:00
) -> ImportModelResponse:
""" Add a model using its local path, repo_id, or remote URL """
items_to_import = {location}
prediction_types = { x.value: x for x in SchedulerPredictionType }
logger = ApiDependencies.invoker.services.logger
try:
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
items_to_import = items_to_import,
prediction_type_helper = lambda x: prediction_types.get(prediction_type)
)
info = installed_models.get(location)
2023-07-05 10:08:47 +00:00
if not info:
logger.error("Import failed")
raise HTTPException(status_code=424)
logger.info(f'Successfully imported {location}, got {info}')
2023-07-05 10:08:47 +00:00
return ImportModelResponse(
location = location,
info = info,
2023-07-03 23:32:54 +00:00
)
except KeyError as e:
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
except ValueError as e:
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
2023-04-06 19:17:48 +00:00
@models_router.delete(
2023-07-04 14:40:32 +00:00
"/{base_model}/{model_type}/{model_name}",
2023-04-06 19:17:48 +00:00
operation_id="del_model",
responses={
204: {
2023-04-07 02:25:18 +00:00
"description": "Model deleted successfully"
2023-04-06 19:17:48 +00:00
},
404: {
"description": "Model not found"
}
},
)
2023-07-04 14:40:32 +00:00
async def delete_model(
2023-07-05 10:08:47 +00:00
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
) -> Response:
2023-04-06 19:17:48 +00:00
"""Delete Model"""
2023-04-29 14:48:50 +00:00
logger = ApiDependencies.invoker.services.logger
2023-04-06 19:17:48 +00:00
2023-07-04 14:40:32 +00:00
try:
ApiDependencies.invoker.services.model_manager.del_model(model_name,
base_model = base_model,
model_type = model_type
)
logger.info(f"Deleted model: {model_name}")
2023-07-05 10:08:47 +00:00
return Response(status_code=204)
2023-07-04 14:40:32 +00:00
except KeyError:
logger.error(f"Model not found: {model_name}")
2023-04-07 02:25:18 +00:00
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
2023-04-06 20:23:09 +00:00
# @socketio.on("convertToDiffusers")
# def convert_to_diffusers(model_to_convert: dict):
# try:
# if model_info := self.generate.model_manager.model_info(
# model_name=model_to_convert["model_name"]
# ):
# if "weights" in model_info:
# ckpt_path = Path(model_info["weights"])
# original_config_file = Path(model_info["config"])
# model_name = model_to_convert["model_name"]
# model_description = model_info["description"]
# else:
# self.socketio.emit(
# "error", {"message": "Model is not a valid checkpoint file"}
# )
# else:
# self.socketio.emit(
# "error", {"message": "Could not retrieve model info."}
# )
# if not ckpt_path.is_absolute():
# ckpt_path = Path(Globals.root, ckpt_path)
# if original_config_file and not original_config_file.is_absolute():
# original_config_file = Path(Globals.root, original_config_file)
# diffusers_path = Path(
# ckpt_path.parent.absolute(), f"{model_name}_diffusers"
# )
# if model_to_convert["save_location"] == "root":
# diffusers_path = Path(
# global_converted_ckpts_dir(), f"{model_name}_diffusers"
# )
# if (
# model_to_convert["save_location"] == "custom"
# and model_to_convert["custom_location"] is not None
# ):
# diffusers_path = Path(
# model_to_convert["custom_location"], f"{model_name}_diffusers"
# )
# if diffusers_path.exists():
# shutil.rmtree(diffusers_path)
# self.generate.model_manager.convert_and_import(
# ckpt_path,
# diffusers_path,
# model_name=model_name,
# model_description=model_description,
# vae=None,
# original_config_file=original_config_file,
# commit_to_conf=opt.conf,
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelConverted",
# {
# "new_model_name": model_name,
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Model Converted: {model_name}")
# except Exception as e:
# self.handle_exceptions(e)
# @socketio.on("mergeDiffusersModels")
# def merge_diffusers_models(model_merge_info: dict):
# try:
# models_to_merge = model_merge_info["models_to_merge"]
# model_ids_or_paths = [
# self.generate.model_manager.model_name_or_path(x)
# for x in models_to_merge
# ]
# merged_pipe = merge_diffusion_models(
# model_ids_or_paths,
# model_merge_info["alpha"],
# model_merge_info["interp"],
# model_merge_info["force"],
# )
# dump_path = global_models_dir() / "merged_models"
# if model_merge_info["model_merge_save_path"] is not None:
# dump_path = Path(model_merge_info["model_merge_save_path"])
# os.makedirs(dump_path, exist_ok=True)
# dump_path = dump_path / model_merge_info["merged_model_name"]
# merged_pipe.save_pretrained(dump_path, safe_serialization=1)
# merged_model_config = dict(
# model_name=model_merge_info["merged_model_name"],
# description=f'Merge of models {", ".join(models_to_merge)}',
# commit_to_conf=opt.conf,
# )
# if vae := self.generate.model_manager.config[models_to_merge[0]].get(
# "vae", None
# ):
# print(f">> Using configured VAE assigned to {models_to_merge[0]}")
# merged_model_config.update(vae=vae)
# self.generate.model_manager.import_diffuser_model(
# dump_path, **merged_model_config
# )
# new_model_list = self.generate.model_manager.list_models()
# socketio.emit(
# "modelsMerged",
# {
# "merged_models": models_to_merge,
# "merged_model_name": model_merge_info["merged_model_name"],
# "model_list": new_model_list,
# "update": True,
# },
# )
# print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e: