InvokeAI/invokeai/app/services/config.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

641 lines
24 KiB
Python
Raw Normal View History

# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team
2023-05-04 05:20:30 +00:00
"""Invokeai configuration system.
Arguments and fields are taken from the pydantic definition of the
model. Defaults can be set by creating a yaml configuration file that
has a top-level key of "InvokeAI" and subheadings for each of the
categories returned by `invokeai --help`. The file looks like this:
2023-05-04 05:20:30 +00:00
[file: invokeai.yaml]
InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
autoimport_dir: null
Models:
model: stable-diffusion-1.5
embeddings: true
Memory/Performance:
xformers_enabled: false
sequential_guidance: false
precision: float16
max_cache_size: 6
max_vram_cache_size: 0.5
always_use_cpu: false
free_gpu_mem: false
Features:
esrgan: true
patchmatch: true
internet_available: true
log_tokenization: false
Web Server:
host: 127.0.0.1
port: 8081
allow_origins: []
allow_credentials: true
allow_methods:
- '*'
allow_headers:
- '*'
2023-05-04 05:20:30 +00:00
The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can replace supersede this by providing any
OmegaConf dictionary object initialization time:
2023-05-04 05:20:30 +00:00
omegaconf = OmegaConf.load('/tmp/init.yaml')
conf = InvokeAIAppConfig()
conf.parse_args(conf=omegaconf)
2023-05-04 05:20:30 +00:00
InvokeAIAppConfig.parse_args() will parse the contents of `sys.argv`
at initialization time. You may pass a list of strings in the optional
2023-05-04 05:20:30 +00:00
`argv` argument to use instead of the system argv:
conf.parse_args(argv=['--xformers_enabled'])
2023-05-04 05:20:30 +00:00
It is also possible to set a value at initialization time. However, if
you call parse_args() it may be overwritten.
2023-05-04 05:20:30 +00:00
conf = InvokeAIAppConfig(xformers_enabled=True)
conf.parse_args(argv=['--no-xformers'])
conf.xformers_enabled
# False
To avoid this, use `get_config()` to retrieve the application-wide
configuration object. This will retain any properties set at object
creation time:
conf = InvokeAIAppConfig.get_config(xformers_enabled=True)
conf.parse_args(argv=['--no-xformers'])
conf.xformers_enabled
# True
2023-05-04 05:20:30 +00:00
Any setting can be overwritten by setting an environment variable of
form: "INVOKEAI_<setting>", as in:
2023-05-04 05:20:30 +00:00
export INVOKEAI_port=8080
2023-05-04 05:20:30 +00:00
Order of precedence (from highest):
1) initialization options
2) command line options
3) environment variable options
4) config file options
5) pydantic defaults
Typical usage at the top level file:
2023-05-04 05:20:30 +00:00
from invokeai.app.services.config import InvokeAIAppConfig
# get global configuration and print its cache size
conf = InvokeAIAppConfig.get_config()
conf.parse_args()
print(conf.max_cache_size)
2023-05-04 05:20:30 +00:00
Typical usage in a backend module:
from invokeai.app.services.config import InvokeAIAppConfig
# get global configuration and print its cache size value
conf = InvokeAIAppConfig.get_config()
print(conf.max_cache_size)
2023-05-04 05:20:30 +00:00
Computed properties:
The InvokeAIAppConfig object has a series of properties that
resolve paths relative to the runtime root directory. They each return
a Path object:
root_path - path to InvokeAI root
output_path - path to default outputs directory
model_conf_path - path to models.yaml
conf - alias for the above
embedding_path - path to the embeddings directory
lora_path - path to the LoRA directory
2023-05-04 05:20:30 +00:00
In most cases, you will want to create a single InvokeAIAppConfig
object for the entire application. The InvokeAIAppConfig.get_config() function
2023-05-04 05:20:30 +00:00
does this:
config = InvokeAIAppConfig.get_config()
config.parse_args() # read values from the command line/config file
2023-05-04 05:20:30 +00:00
print(config.root)
# Subclassing
If you wish to create a similar class, please subclass the
`InvokeAISettings` class and define a Literal field named "type",
which is set to the desired top-level name. For example, to create a
"InvokeBatch" configuration, define like this:
class InvokeBatch(InvokeAISettings):
type: Literal["InvokeBatch"] = "InvokeBatch"
node_count : int = Field(default=1, description="Number of nodes to run on", category='Resources')
cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", category='Resources')
This will now read and write from the "InvokeBatch" section of the
config file, look for environment variables named INVOKEBATCH_*, and
accept the command-line arguments `--node_count` and `--cpu_count`. The
two configs are kept in separate sections of the config file:
# invokeai.yaml
InvokeBatch:
Resources:
node_count: 1
cpu_count: 8
InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
...
2023-07-27 14:54:01 +00:00
"""
from __future__ import annotations
2023-05-04 05:20:30 +00:00
import argparse
2023-05-17 19:22:58 +00:00
import pydoc
2023-05-04 05:20:30 +00:00
import os
import sys
from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig, ListConfig
2023-05-04 05:20:30 +00:00
from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as
from typing import Any, ClassVar, Dict, List, Set, Literal, Union, get_origin, get_type_hints, get_args
2023-05-04 05:20:30 +00:00
INIT_FILE = Path("invokeai.yaml")
DB_FILE = Path("invokeai.db")
2023-05-04 05:20:30 +00:00
LEGACY_INIT_FILE = Path("invokeai.init")
DEFAULT_MAX_VRAM = 0.5
2023-08-02 13:44:06 +00:00
2023-08-02 18:28:19 +00:00
2023-05-04 05:20:30 +00:00
class InvokeAISettings(BaseSettings):
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
Runtime configuration settings in which default values are
read from an omegaconf .yaml file.
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
initconf: ClassVar[DictConfig] = None
argparse_groups: ClassVar[Dict] = {}
def parse_args(self, argv: list = sys.argv[1:]):
parser = self.get_parser()
2023-05-25 03:57:15 +00:00
opt = parser.parse_args(argv)
2023-05-04 05:20:30 +00:00
for name in self.__fields__:
if name not in self._excluded():
value = getattr(opt, name)
if isinstance(value, ListConfig):
value = list(value)
elif isinstance(value, DictConfig):
value = dict(value)
setattr(self, name, value)
2023-05-04 05:20:30 +00:00
def to_yaml(self) -> str:
"""
Return a YAML string representing our settings. This can be used
as the contents of `invokeai.yaml` to restore settings later.
"""
cls = self.__class__
type = get_args(get_type_hints(cls)["type"])[0]
field_dict = dict({type: dict()})
for name, field in self.__fields__.items():
if name in cls._excluded_from_yaml():
continue
category = field.field_info.extra.get("category") or "Uncategorized"
value = getattr(self, name)
if category not in field_dict[type]:
field_dict[type][category] = dict()
# keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value, Path) else value
conf = OmegaConf.create(field_dict)
return OmegaConf.to_yaml(conf)
2023-05-04 05:20:30 +00:00
@classmethod
def add_parser_arguments(cls, parser):
if "type" in get_type_hints(cls):
settings_stanza = get_args(get_type_hints(cls)["type"])[0]
2023-05-04 05:20:30 +00:00
else:
settings_stanza = "Uncategorized"
env_prefix = cls.Config.env_prefix if hasattr(cls.Config, "env_prefix") else settings_stanza.upper()
initconf = (
cls.initconf.get(settings_stanza)
if cls.initconf and settings_stanza in cls.initconf
else OmegaConf.create()
2023-07-27 14:54:01 +00:00
)
2023-05-04 05:20:30 +00:00
# create an upcase version of the environment in
# order to achieve case-insensitive environment
# variables (the way Windows does)
upcase_environ = dict()
for key, value in os.environ.items():
upcase_environ[key.upper()] = value
2023-07-04 21:05:35 +00:00
2023-05-04 05:20:30 +00:00
fields = cls.__fields__
cls.argparse_groups = {}
2023-07-04 21:05:35 +00:00
2023-05-04 05:20:30 +00:00
for name, field in fields.items():
if name not in cls._excluded():
current_default = field.default
category = field.field_info.extra.get("category", "Uncategorized")
env_name = env_prefix + "_" + name
if category in initconf and name in initconf.get(category):
field.default = initconf.get(category).get(name)
if env_name.upper() in upcase_environ:
field.default = upcase_environ[env_name.upper()]
2023-05-04 05:20:30 +00:00
cls.add_field_argument(parser, name, field)
field.default = current_default
2023-05-04 05:20:30 +00:00
@classmethod
def cmd_name(self, command_field: str = "type") -> str:
hints = get_type_hints(self)
if command_field in hints:
return get_args(hints[command_field])[0]
else:
return "Uncategorized"
2023-05-04 05:20:30 +00:00
@classmethod
def get_parser(cls) -> ArgumentParser:
2023-05-17 19:22:58 +00:00
parser = PagingArgumentParser(
2023-05-04 05:20:30 +00:00
prog=cls.cmd_name(),
description=cls.__doc__,
)
cls.add_parser_arguments(parser)
return parser
@classmethod
def add_subparser(cls, parser: argparse.ArgumentParser):
parser.add_parser(cls.cmd_name(), help=cls.__doc__)
@classmethod
def _excluded(self) -> List[str]:
# internal fields that shouldn't be exposed as command line options
2023-08-01 01:15:44 +00:00
return ["type", "initconf"]
2023-07-27 14:54:01 +00:00
@classmethod
def _excluded_from_yaml(self) -> List[str]:
# combination of deprecated parameters and internal ones that shouldn't be exposed as invokeai.yaml options
return [
"type",
"initconf",
"version",
"from_file",
"model",
"root",
]
2023-05-04 05:20:30 +00:00
class Config:
env_file_encoding = "utf-8"
arbitrary_types_allowed = True
case_sensitive = True
@classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override=None):
field_type = get_type_hints(cls).get(name)
2023-05-04 05:20:30 +00:00
default = (
default_override
if default_override is not None
else field.default
if field.default_factory is None
else field.default_factory()
2023-07-27 14:54:01 +00:00
)
2023-05-04 05:20:30 +00:00
if category := field.field_info.extra.get("category"):
if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category)
argparse_group = cls.argparse_groups[category]
else:
argparse_group = command_parser
if get_origin(field_type) == Literal:
2023-05-04 05:20:30 +00:00
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else int_or_float_or_str
2023-05-04 05:20:30 +00:00
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
elif get_origin(field_type) == Union:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=int_or_float_or_str,
default=default,
help=field.field_info.description,
)
elif get_origin(field_type) == list:
argparse_group.add_argument(
f"--{name}",
dest=name,
nargs="*",
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
)
2023-05-04 05:20:30 +00:00
else:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_ == bool else "store",
help=field.field_info.description,
)
2023-07-27 14:54:01 +00:00
2023-05-04 05:20:30 +00:00
def _find_root() -> Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
2023-05-04 05:20:30 +00:00
if os.environ.get("INVOKEAI_ROOT"):
2023-08-01 02:36:11 +00:00
root = Path(os.environ["INVOKEAI_ROOT"])
elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]]):
root = (venv.parent).resolve()
2023-05-04 05:20:30 +00:00
else:
root = Path("~/invokeai").expanduser().resolve()
return root
2023-07-30 20:25:06 +00:00
2023-05-04 05:20:30 +00:00
class InvokeAIAppConfig(InvokeAISettings):
2023-07-27 14:54:01 +00:00
"""
2023-05-17 19:22:58 +00:00
Generate images using Stable Diffusion. Use "invokeai" to launch
the command-line client (recommended for experts only), or
"invokeai-web" to launch the web server. Global options
can be changed by editing the file "INVOKEAI_ROOT/invokeai.yaml" or by
setting environment variables INVOKEAI_<setting>.
2023-07-27 14:54:01 +00:00
"""
singleton_config: ClassVar[InvokeAIAppConfig] = None
singleton_init: ClassVar[Dict] = None
2023-07-04 21:05:35 +00:00
2023-05-04 05:20:30 +00:00
# fmt: off
type: Literal["InvokeAI"] = "InvokeAI"
2023-05-17 19:22:58 +00:00
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
port : int = Field(default=9090, description="Port to bind to", category='Web Server')
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server')
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", category='Web Server')
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server')
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server')
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features')
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
ram : Union[float,Literal['auto']] = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number or 'auto')", category='Cache')
vram : Union[float,Literal['auto']] = Field(default=2.75, ge=0, description="Amount of VRAM reserved for model storage (floating point number or 'auto')", category='Cache')
lazy_offload : bool = Field(default=True, description='Keep models in VRAM until their space is needed', category='Cache')
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='auto',description='Floating point precision', category='Device')
device : Literal[tuple(['cpu','cuda','mps','cuda','cuda:1','auto'])] = Field(default='auto',description='Generation device', category='Device')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Generation')
attention_type : Literal[tuple(['auto','normal','xformers','sliced','torch-sdp'])] = Field(default='auto', description='Attention type', category='Generation')
attention_slice_size: Literal[tuple(['auto','max',1,2,3,4,5,6,7,8])] = Field(default='auto', description='Slice size, valid when attention_type=="sliced"', category='Generation')
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Generation')
root : Path = Field(default=None, description='InvokeAI runtime root directory', category='Paths')
autoimport_dir : Path = Field(default='autoimport', description='Path to a directory of models files to be imported on startup.', category='Paths')
lora_dir : Path = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
embedding_dir : Path = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths')
controlnet_dir : Path = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths')
2023-05-04 05:20:30 +00:00
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths')
2023-05-17 19:22:58 +00:00
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths')
2023-05-17 19:22:58 +00:00
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
2023-08-08 14:58:10 +00:00
ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', category='Features')
2023-07-04 21:05:35 +00:00
2023-05-25 03:57:15 +00:00
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging")
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
log_format : Literal[tuple(['plain','color','syslog','legacy'])] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging")
2023-07-21 02:45:35 +00:00
log_level : Literal[tuple(["debug","info","warning","error","critical"])] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging")
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
2023-05-04 05:20:30 +00:00
# fmt: on
class Config:
validate_assignment = True
def parse_args(self, argv: List[str] = None, conf: DictConfig = None, clobber=False):
2023-07-27 14:54:01 +00:00
"""
2023-07-04 21:05:35 +00:00
Update settings with contents of init file, environment, and
command-line settings.
2023-05-04 05:20:30 +00:00
:param conf: alternate Omegaconf dictionary object
:param argv: aternate sys.argv list
:param clobber: ovewrite any initialization parameters passed during initialization
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
# Set the runtime root directory. We parse command-line switches here
# in order to pick up the --root_dir option.
super().parse_args(argv)
if conf is None:
2023-05-04 05:20:30 +00:00
try:
conf = OmegaConf.load(self.root_dir / INIT_FILE)
except:
pass
InvokeAISettings.initconf = conf
2023-07-04 21:05:35 +00:00
2023-05-04 05:20:30 +00:00
# parse args again in order to pick up settings in configuration file
super().parse_args(argv)
2023-05-04 05:20:30 +00:00
if self.singleton_init and not clobber:
hints = get_type_hints(self.__class__)
for k in self.singleton_init:
setattr(self, k, parse_obj_as(hints[k], self.singleton_init[k]))
2023-05-04 05:20:30 +00:00
@classmethod
def get_config(cls, **kwargs) -> InvokeAIAppConfig:
2023-07-27 14:54:01 +00:00
"""
This returns a singleton InvokeAIAppConfig configuration object.
2023-07-27 14:54:01 +00:00
"""
if (
cls.singleton_config is None
or type(cls.singleton_config) != cls
or (kwargs and cls.singleton_init != kwargs)
):
cls.singleton_config = cls(**kwargs)
cls.singleton_init = kwargs
return cls.singleton_config
2023-07-04 21:05:35 +00:00
2023-05-04 05:20:30 +00:00
@property
def root_path(self) -> Path:
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
Path to the runtime root directory
2023-07-27 14:54:01 +00:00
"""
2023-08-01 01:15:44 +00:00
if self.root:
root = Path(self.root).expanduser().absolute()
2023-05-04 05:20:30 +00:00
else:
2023-08-01 02:36:11 +00:00
root = self.find_root().expanduser().absolute()
self.root = root # insulate ourselves from relative paths that may change
2023-08-01 01:15:44 +00:00
return root
2023-05-04 05:20:30 +00:00
@property
def root_dir(self) -> Path:
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
Alias for above.
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
return self.root_path
def _resolve(self, partial_path: Path) -> Path:
return (self.root_path / partial_path).resolve()
2023-05-30 17:49:43 +00:00
@property
def init_file_path(self) -> Path:
2023-07-27 14:54:01 +00:00
"""
2023-05-30 17:49:43 +00:00
Path to invokeai.yaml
2023-07-27 14:54:01 +00:00
"""
2023-05-30 17:49:43 +00:00
return self._resolve(INIT_FILE)
2023-05-04 05:20:30 +00:00
@property
def output_path(self) -> Path:
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
Path to defaults outputs directory.
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
return self._resolve(self.outdir)
@property
def db_path(self) -> Path:
2023-07-27 14:54:01 +00:00
"""
Path to the invokeai.db file.
2023-07-27 14:54:01 +00:00
"""
return self._resolve(self.db_dir) / DB_FILE
2023-05-04 05:20:30 +00:00
@property
def model_conf_path(self) -> Path:
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
Path to models configuration file.
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
return self._resolve(self.conf_path)
@property
def legacy_conf_path(self) -> Path:
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
Path to directory of legacy configuration files (e.g. v1-inference.yaml)
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
return self._resolve(self.legacy_conf_dir)
@property
def models_path(self) -> Path:
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
Path to the models directory
2023-07-27 14:54:01 +00:00
"""
return self._resolve(self.models_dir)
2023-05-04 05:20:30 +00:00
@property
def autoconvert_path(self) -> Path:
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
Path to the directory containing models to be imported automatically at startup.
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None
# the following methods support legacy calls leftover from the Globals era
@property
def full_precision(self) -> bool:
"""Return true if precision set to float32"""
return self.precision == "float32"
@property
def xformers_enabled(self) -> bool:
"""Return true if attention_type=='xformers'."""
return self.attention_type=='xformers'
2023-05-04 05:20:30 +00:00
@property
def disable_xformers(self) -> bool:
"""Return true if xformers_enabled is false"""
return not self.xformers_enabled
2023-05-16 05:50:01 +00:00
@property
def try_patchmatch(self) -> bool:
"""Return true if patchmatch true"""
return self.patchmatch
@property
def nsfw_checker(self) -> bool:
"""NSFW node is always active and disabled from Web UIe"""
return True
@property
def invisible_watermark(self) -> bool:
"""invisible watermark node is always active and disabled from Web UIe"""
return True
2023-07-27 14:54:01 +00:00
@property
def max_cache_size(self) -> Union[str, float]:
"""return value of ram attribute."""
return self.ram
@property
def max_vram_cache_size(self) -> Union[str, float]:
"""return value of vram attribute."""
return self.vram
2023-05-04 05:20:30 +00:00
@staticmethod
def find_root() -> Path:
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
Choose the runtime root directory when not specified on command line or
init file.
2023-07-27 14:54:01 +00:00
"""
2023-05-04 05:20:30 +00:00
return _find_root()
# @property
# def attention_slice_size(self) -> Union[str, int]:
# """
# Return one of "auto", "max", or 1-8.
# """
# size = self.attention_slice
# try:
# size= int(size)
# assert size > 0
# except ValueError:
# pass
# return size
2023-05-17 19:22:58 +00:00
class PagingArgumentParser(argparse.ArgumentParser):
2023-07-27 14:54:01 +00:00
"""
2023-05-17 19:22:58 +00:00
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
2023-07-27 14:54:01 +00:00
"""
2023-05-17 19:22:58 +00:00
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
2023-07-27 14:54:01 +00:00
def get_invokeai_config(**kwargs) -> InvokeAIAppConfig:
2023-07-27 14:54:01 +00:00
"""
Legacy function which returns InvokeAIAppConfig.get_config()
2023-07-27 14:54:01 +00:00
"""
return InvokeAIAppConfig.get_config(**kwargs)
def int_or_float_or_str(value:Any) -> Union[int, float, str]:
"""
Workaround for argparse type checking.
"""
try:
return int(value)
except:
pass
try:
return float(value)
except:
pass
return str(value)