2023-07-06 00:25:47 +00:00
|
|
|
"""
|
|
|
|
invokeai.backend.model_management.model_merge exports:
|
|
|
|
merge_diffusion_models() -- combine multiple models by location and return a pipeline object
|
|
|
|
merge_diffusion_models_and_commit() -- combine multiple models by ModelManager ID and write to models.yaml
|
|
|
|
|
|
|
|
Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team
|
|
|
|
"""
|
|
|
|
|
|
|
|
import warnings
|
|
|
|
from enum import Enum
|
|
|
|
from pathlib import Path
|
|
|
|
from diffusers import DiffusionPipeline
|
|
|
|
from diffusers import logging as dlogging
|
2023-07-14 17:45:16 +00:00
|
|
|
from typing import List, Union, Optional
|
2023-07-06 00:25:47 +00:00
|
|
|
|
|
|
|
import invokeai.backend.util.logging as logger
|
|
|
|
|
2023-07-06 16:21:42 +00:00
|
|
|
from ...backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType, AddModelResult
|
2023-07-06 00:25:47 +00:00
|
|
|
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-07-06 00:25:47 +00:00
|
|
|
class MergeInterpolationMethod(str, Enum):
|
2023-07-06 19:12:34 +00:00
|
|
|
WeightedSum = "weighted_sum"
|
2023-07-06 00:25:47 +00:00
|
|
|
Sigmoid = "sigmoid"
|
|
|
|
InvSigmoid = "inv_sigmoid"
|
|
|
|
AddDifference = "add_difference"
|
|
|
|
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-07-06 16:21:42 +00:00
|
|
|
class ModelMerger(object):
|
|
|
|
def __init__(self, manager: ModelManager):
|
|
|
|
self.manager = manager
|
2023-07-06 00:25:47 +00:00
|
|
|
|
2023-07-06 16:21:42 +00:00
|
|
|
def merge_diffusion_models(
|
|
|
|
self,
|
|
|
|
model_paths: List[Path],
|
|
|
|
alpha: float = 0.5,
|
2023-08-01 07:55:13 +00:00
|
|
|
interp: Optional[MergeInterpolationMethod] = None,
|
2023-07-06 16:21:42 +00:00
|
|
|
force: bool = False,
|
|
|
|
**kwargs,
|
|
|
|
) -> DiffusionPipeline:
|
|
|
|
"""
|
|
|
|
:param model_paths: up to three models, designated by their local paths or HuggingFace repo_ids
|
|
|
|
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
|
|
|
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
|
|
|
:param interp: The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None.
|
|
|
|
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported.
|
|
|
|
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
|
2023-07-06 00:25:47 +00:00
|
|
|
|
2023-07-06 16:21:42 +00:00
|
|
|
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
|
|
|
|
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
|
|
|
|
"""
|
|
|
|
with warnings.catch_warnings():
|
|
|
|
warnings.simplefilter("ignore")
|
|
|
|
verbosity = dlogging.get_verbosity()
|
|
|
|
dlogging.set_verbosity_error()
|
|
|
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(
|
|
|
|
model_paths[0],
|
|
|
|
custom_pipeline="checkpoint_merger",
|
|
|
|
)
|
|
|
|
merged_pipe = pipe.merge(
|
|
|
|
pretrained_model_name_or_path_list=model_paths,
|
|
|
|
alpha=alpha,
|
|
|
|
interp=interp.value if interp else None, # diffusers API treats None as "weighted sum"
|
|
|
|
force=force,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
dlogging.set_verbosity(verbosity)
|
|
|
|
return merged_pipe
|
|
|
|
|
|
|
|
def merge_diffusion_models_and_save(
|
|
|
|
self,
|
|
|
|
model_names: List[str],
|
|
|
|
base_model: Union[BaseModelType, str],
|
|
|
|
merged_model_name: str,
|
|
|
|
alpha: float = 0.5,
|
2023-08-01 07:55:13 +00:00
|
|
|
interp: Optional[MergeInterpolationMethod] = None,
|
2023-07-06 16:21:42 +00:00
|
|
|
force: bool = False,
|
2023-07-14 17:45:16 +00:00
|
|
|
merge_dest_directory: Optional[Path] = None,
|
2023-07-06 00:25:47 +00:00
|
|
|
**kwargs,
|
2023-07-06 16:21:42 +00:00
|
|
|
) -> AddModelResult:
|
|
|
|
"""
|
|
|
|
:param models: up to three models, designated by their InvokeAI models.yaml model name
|
|
|
|
:param base_model: base model (must be the same for all merged models!)
|
|
|
|
:param merged_model_name: name for new model
|
|
|
|
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
|
|
|
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
|
|
|
:param interp: The interpolation method to use for the merging. Supports "weighted_average", "sigmoid", "inv_sigmoid", "add_difference" and None.
|
|
|
|
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported. Add_difference is A+(B-C).
|
|
|
|
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
|
2023-07-14 17:45:16 +00:00
|
|
|
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
|
2023-07-06 16:21:42 +00:00
|
|
|
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
|
|
|
|
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
|
|
|
|
"""
|
|
|
|
model_paths = list()
|
|
|
|
config = self.manager.app_config
|
|
|
|
base_model = BaseModelType(base_model)
|
|
|
|
vae = None
|
2023-07-27 14:54:01 +00:00
|
|
|
|
2023-07-06 16:21:42 +00:00
|
|
|
for mod in model_names:
|
|
|
|
info = self.manager.list_model(mod, base_model=base_model, model_type=ModelType.Main)
|
2023-07-06 19:12:34 +00:00
|
|
|
assert info, f"model {mod}, base_model {base_model}, is unknown"
|
2023-07-06 16:21:42 +00:00
|
|
|
assert (
|
|
|
|
info["model_format"] == "diffusers"
|
|
|
|
), f"{mod} is not a diffusers model. It must be optimized before merging"
|
2023-07-06 19:12:34 +00:00
|
|
|
assert info["variant"] == "normal", f"{mod} is a {info['variant']} model, which cannot currently be merged"
|
|
|
|
assert (
|
|
|
|
len(model_names) <= 2 or interp == MergeInterpolationMethod.AddDifference
|
|
|
|
), "When merging three models, only the 'add_difference' merge method is supported"
|
2023-07-06 16:21:42 +00:00
|
|
|
# pick up the first model's vae
|
|
|
|
if mod == model_names[0]:
|
|
|
|
vae = info.get("vae")
|
|
|
|
model_paths.extend([config.root_path / info["path"]])
|
2023-07-06 00:25:47 +00:00
|
|
|
|
2023-07-06 16:21:42 +00:00
|
|
|
merge_method = None if interp == "weighted_sum" else MergeInterpolationMethod(interp)
|
2023-07-06 19:12:34 +00:00
|
|
|
logger.debug(f"interp = {interp}, merge_method={merge_method}")
|
2023-07-06 16:21:42 +00:00
|
|
|
merged_pipe = self.merge_diffusion_models(model_paths, alpha, merge_method, force, **kwargs)
|
|
|
|
dump_path = (
|
2023-07-14 17:45:16 +00:00
|
|
|
Path(merge_dest_directory)
|
|
|
|
if merge_dest_directory
|
|
|
|
else config.models_path / base_model.value / ModelType.Main.value
|
2023-07-06 16:21:42 +00:00
|
|
|
)
|
|
|
|
dump_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
dump_path = dump_path / merged_model_name
|
2023-07-06 00:25:47 +00:00
|
|
|
|
2023-08-01 07:55:13 +00:00
|
|
|
merged_pipe.save_pretrained(dump_path, safe_serialization=True)
|
2023-07-06 16:21:42 +00:00
|
|
|
attributes = dict(
|
|
|
|
path=str(dump_path),
|
|
|
|
description=f"Merge of models {', '.join(model_names)}",
|
|
|
|
model_format="diffusers",
|
|
|
|
variant=ModelVariantType.Normal.value,
|
|
|
|
vae=vae,
|
2023-07-27 14:54:01 +00:00
|
|
|
)
|
2023-07-06 16:21:42 +00:00
|
|
|
return self.manager.add_model(
|
|
|
|
merged_model_name,
|
|
|
|
base_model=base_model,
|
|
|
|
model_type=ModelType.Main,
|
|
|
|
model_attributes=attributes,
|
|
|
|
clobber=True,
|
|
|
|
)
|