InvokeAI/invokeai/backend/model_management/model_merge.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

120 lines
5.5 KiB
Python
Raw Normal View History

2023-07-06 00:25:47 +00:00
"""
invokeai.backend.model_management.model_merge exports:
merge_diffusion_models() -- combine multiple models by location and return a pipeline object
merge_diffusion_models_and_commit() -- combine multiple models by ModelManager ID and write to models.yaml
Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team
"""
import warnings
from enum import Enum
from pathlib import Path
from diffusers import DiffusionPipeline
from diffusers import logging as dlogging
from typing import List
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from ...backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType
class MergeInterpolationMethod(str, Enum):
Sigmoid = "sigmoid"
InvSigmoid = "inv_sigmoid"
AddDifference = "add_difference"
def merge_diffusion_models(
model_paths: List[Path],
alpha: float = 0.5,
interp: MergeInterpolationMethod = None,
2023-07-06 00:25:47 +00:00
force: bool = False,
**kwargs,
) -> DiffusionPipeline:
"""
:param model_paths: up to three models, designated by their local paths or HuggingFace repo_ids
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
:param interp: The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None.
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported.
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
"""
with warnings.catch_warnings():
warnings.simplefilter("ignore")
verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error()
pipe = DiffusionPipeline.from_pretrained(
model_paths[0],
custom_pipeline="checkpoint_merger",
)
merged_pipe = pipe.merge(
pretrained_model_name_or_path_list=model_paths,
alpha=alpha,
interp=interp.value if interp else None, #diffusers API treats None as "weighted sum"
force=force,
**kwargs,
)
dlogging.set_verbosity(verbosity)
return merged_pipe
def merge_diffusion_models_and_save (
models: List["str"],
base_model: BaseModelType,
merged_model_name: str,
config: InvokeAIAppConfig,
alpha: float = 0.5,
interp: MergeInterpolationMethod = None,
2023-07-06 00:25:47 +00:00
force: bool = False,
**kwargs,
):
"""
:param models: up to three models, designated by their InvokeAI models.yaml model name
:param base_model: base model (must be the same for all merged models!)
:param merged_model_name: name for new model
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
:param interp: The interpolation method to use for the merging. Supports "weighted_average", "sigmoid", "inv_sigmoid", "add_difference" and None.
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported. Add_difference is A+(B-C).
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
"""
model_manager = ModelManager(config.model_conf_path)
model_paths = list()
vae = None
for mod in models:
info = model_manager.model_info(mod, base_model=base_model, model_type=ModelType.main)
assert info, f"model {mod}, base_model {base_model}, is unknown"
assert info["format"] == "diffusers", f"{mod} is not a diffusers model. It must be optimized before merging"
assert info["variant"] == "normal", (f"{mod} is a {info['variant']} model, which cannot currently be merged")
if mod == models[0]:
vae = info["vae"]
model_paths.extend([info["path"]])
merged_pipe = merge_diffusion_models(
model_paths, alpha, interp, force, **kwargs
)
dump_path = config.models_path / base_model.value / ModelType.main.value
dump_path.mkdir(parents=True, exist_ok=True)
dump_path = dump_path / merged_model_name
merged_pipe.save_pretrained(dump_path, safe_serialization=1)
attributes = dict(
path = dump_path,
description = f"Merge of models {', '.join(models)}",
model_format = "diffusers",
variant = ModelVariantType.Normal.value,
vae = vae,
)
model_manager.add_model(merged_model_name,
base_model = base_model,
model_type = ModelType.Main,
model_attributes = attributes,
clobber = True
)