InvokeAI/invokeai/backend/install/model_install_backend.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

511 lines
18 KiB
Python
Raw Normal View History

"""
Utility (backend) functions used by model_install.py
"""
import os
import re
import shutil
import sys
import warnings
from dataclasses import dataclass,field
from pathlib import Path
from tempfile import TemporaryFile
from typing import List, Dict, Callable
import requests
from diffusers import AutoencoderKL
2023-05-30 17:49:43 +00:00
from huggingface_hub import hf_hub_url, HfFolder
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from tqdm import tqdm
import invokeai.configs as configs
2023-03-03 06:02:00 +00:00
2023-06-06 02:03:44 +00:00
from invokeai.app.services.config import InvokeAIAppConfig
2023-03-03 06:02:00 +00:00
from ..stable_diffusion import StableDiffusionGeneratorPipeline
from ..util.logging import InvokeAILogger
warnings.filterwarnings("ignore")
# --------------------------globals-----------------------
config = InvokeAIAppConfig.get_config()
Model_dir = "models"
Weights_dir = "ldm/stable-diffusion-v1/"
# the initial "configs" dir is now bundled in the `invokeai.configs` package
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
# initial models omegaconf
Datasets = None
# logger
logger = InvokeAILogger.getLogger(name='InvokeAI')
Config_preamble = """
# This file describes the alternative machine learning models
# available to InvokeAI script.
#
# To add a new model, follow the examples below. Each
# model requires a model config file, a weights file,
# and the width and height of the images it
# was trained on.
"""
@dataclass
class ModelInstallList:
'''Class for listing models to be installed/removed'''
Multiple fixes 1. Model installer works correctly under Windows 11 Terminal 2. Fixed crash when configure script hands control off to installer 3. Kill install subprocess on keyboard interrupt 4. Command-line functionality for --yes configuration and model installation restored. 5. New command-line features: - install/delete lists of diffusers, LoRAS, controlnets and textual inversions using repo ids, paths or URLs. Help: ``` usage: invokeai-model-install [-h] [--diffusers [DIFFUSERS ...]] [--loras [LORAS ...]] [--controlnets [CONTROLNETS ...]] [--textual-inversions [TEXTUAL_INVERSIONS ...]] [--delete] [--full-precision | --no-full-precision] [--yes] [--default_only] [--list-models {diffusers,loras,controlnets,tis}] [--config_file CONFIG_FILE] [--root_dir ROOT] InvokeAI model downloader options: -h, --help show this help message and exit --diffusers [DIFFUSERS ...] List of URLs or repo_ids of diffusers to install/delete --loras [LORAS ...] List of URLs or repo_ids of LoRA/LyCORIS models to install/delete --controlnets [CONTROLNETS ...] List of URLs or repo_ids of controlnet models to install/delete --textual-inversions [TEXTUAL_INVERSIONS ...] List of URLs or repo_ids of textual inversion embeddings to install/delete --delete Delete models listed on command line rather than installing them --full-precision, --no-full-precision use 32-bit weights instead of faster 16-bit weights (default: False) --yes, -y answer "yes" to all prompts --default_only only install the default model --list-models {diffusers,loras,controlnets,tis} list installed models --config_file CONFIG_FILE, -c CONFIG_FILE path to configuration file to create --root_dir ROOT path to root of install directory ```
2023-06-06 01:45:35 +00:00
install_models: List[str] = field(default_factory=list)
remove_models: List[str] = field(default_factory=list)
2023-03-03 06:02:00 +00:00
@dataclass
class UserSelections():
install_models: List[str]= field(default_factory=list)
remove_models: List[str]=field(default_factory=list)
purge_deleted_models: bool=field(default_factory=list)
install_cn_models: List[str] = field(default_factory=list)
remove_cn_models: List[str] = field(default_factory=list)
install_lora_models: List[str] = field(default_factory=list)
remove_lora_models: List[str] = field(default_factory=list)
install_ti_models: List[str] = field(default_factory=list)
remove_ti_models: List[str] = field(default_factory=list)
scan_directory: Path = None
autoscan_on_startup: bool=False
import_model_paths: str=None
def default_config_file():
return config.model_conf_path
def sd_configs():
return config.legacy_conf_path
2023-03-03 06:02:00 +00:00
def initial_models():
global Datasets
if Datasets:
return Datasets
return (Datasets := OmegaConf.load(Dataset_path)['diffusers'])
2023-03-03 06:02:00 +00:00
def install_requested_models(
diffusers: ModelInstallList = None,
controlnet: ModelInstallList = None,
lora: ModelInstallList = None,
ti: ModelInstallList = None,
cn_model_map: Dict[str,str] = None, # temporary - move to model manager
2023-05-30 17:49:43 +00:00
scan_directory: Path = None,
external_models: List[str] = None,
scan_at_startup: bool = False,
precision: str = "float16",
purge_deleted: bool = False,
config_file_path: Path = None,
model_config_file_callback: Callable[[Path],Path] = None
):
2023-03-03 06:02:00 +00:00
"""
Entry point for installing/deleting starter models, or installing external models.
2023-03-03 06:02:00 +00:00
"""
2023-05-30 17:49:43 +00:00
access_token = HfFolder.get_token()
2023-03-03 06:02:00 +00:00
config_file_path = config_file_path or default_config_file()
if not config_file_path.exists():
2023-03-03 06:02:00 +00:00
open(config_file_path, "w")
# prevent circular import here
from ..model_management import ModelManager
2023-05-30 17:49:43 +00:00
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
Multiple fixes 1. Model installer works correctly under Windows 11 Terminal 2. Fixed crash when configure script hands control off to installer 3. Kill install subprocess on keyboard interrupt 4. Command-line functionality for --yes configuration and model installation restored. 5. New command-line features: - install/delete lists of diffusers, LoRAS, controlnets and textual inversions using repo ids, paths or URLs. Help: ``` usage: invokeai-model-install [-h] [--diffusers [DIFFUSERS ...]] [--loras [LORAS ...]] [--controlnets [CONTROLNETS ...]] [--textual-inversions [TEXTUAL_INVERSIONS ...]] [--delete] [--full-precision | --no-full-precision] [--yes] [--default_only] [--list-models {diffusers,loras,controlnets,tis}] [--config_file CONFIG_FILE] [--root_dir ROOT] InvokeAI model downloader options: -h, --help show this help message and exit --diffusers [DIFFUSERS ...] List of URLs or repo_ids of diffusers to install/delete --loras [LORAS ...] List of URLs or repo_ids of LoRA/LyCORIS models to install/delete --controlnets [CONTROLNETS ...] List of URLs or repo_ids of controlnet models to install/delete --textual-inversions [TEXTUAL_INVERSIONS ...] List of URLs or repo_ids of textual inversion embeddings to install/delete --delete Delete models listed on command line rather than installing them --full-precision, --no-full-precision use 32-bit weights instead of faster 16-bit weights (default: False) --yes, -y answer "yes" to all prompts --default_only only install the default model --list-models {diffusers,loras,controlnets,tis} list installed models --config_file CONFIG_FILE, -c CONFIG_FILE path to configuration file to create --root_dir ROOT path to root of install directory ```
2023-06-06 01:45:35 +00:00
if controlnet:
model_manager.install_controlnet_models(controlnet.install_models, access_token=access_token)
model_manager.delete_controlnet_models(controlnet.remove_models)
if lora:
model_manager.install_lora_models(lora.install_models, access_token=access_token)
model_manager.delete_lora_models(lora.remove_models)
if ti:
model_manager.install_ti_models(ti.install_models, access_token=access_token)
model_manager.delete_ti_models(ti.remove_models)
if diffusers:
# TODO: Replace next three paragraphs with calls into new model manager
if diffusers.remove_models and len(diffusers.remove_models) > 0:
logger.info("Processing requested deletions")
for model in diffusers.remove_models:
logger.info(f"{model}...")
model_manager.del_model(model, delete_files=purge_deleted)
model_manager.commit(config_file_path)
if diffusers.install_models and len(diffusers.install_models) > 0:
logger.info("Installing requested models")
downloaded_paths = download_weight_datasets(
models=diffusers.install_models,
access_token=None,
precision=precision,
)
successful = {x:v for x,v in downloaded_paths.items() if v is not None}
if len(successful) > 0:
update_config_file(successful, config_file_path)
if len(successful) < len(diffusers.install_models):
unsuccessful = [x for x in downloaded_paths if downloaded_paths[x] is None]
logger.warning(f"Some of the model downloads were not successful: {unsuccessful}")
# due to above, we have to reload the model manager because conf file
# was changed behind its back
2023-03-03 06:02:00 +00:00
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
external_models = external_models or list()
if scan_directory:
external_models.append(str(scan_directory))
2023-03-03 06:02:00 +00:00
if len(external_models) > 0:
logger.info("INSTALLING EXTERNAL MODELS")
for path_url_or_repo in external_models:
2023-02-16 06:30:59 +00:00
try:
logger.debug(f'In install_requested_models; callback = {model_config_file_callback}')
2023-02-16 06:30:59 +00:00
model_manager.heuristic_import(
path_url_or_repo,
2023-03-03 06:02:00 +00:00
commit_to_conf=config_file_path,
config_file_callback = model_config_file_callback,
2023-02-16 06:30:59 +00:00
)
except KeyboardInterrupt:
sys.exit(-1)
except Exception:
pass
if scan_at_startup and scan_directory.is_dir():
2023-05-30 17:49:43 +00:00
update_autoconvert_dir(scan_directory)
else:
update_autoconvert_dir(None)
2023-05-30 17:49:43 +00:00
def update_autoconvert_dir(autodir: Path):
'''
Update the "autoconvert_dir" option in invokeai.yaml
'''
invokeai_config_path = config.init_file_path
conf = OmegaConf.load(invokeai_config_path)
conf.InvokeAI.Paths.autoconvert_dir = str(autodir) if autodir else None
2023-05-30 17:49:43 +00:00
yaml = OmegaConf.to_yaml(conf)
tmpfile = invokeai_config_path.parent / "new_config.tmp"
with open(tmpfile, "w", encoding="utf-8") as outfile:
outfile.write(yaml)
tmpfile.replace(invokeai_config_path)
2023-03-03 06:02:00 +00:00
# -------------------------------------
def yes_or_no(prompt: str, default_yes=True):
default = "y" if default_yes else "n"
response = input(f"{prompt} [{default}] ") or default
if default_yes:
return response[0] not in ("n", "N")
else:
return response[0] in ("y", "Y")
# ---------------------------------------------
Multiple fixes 1. Model installer works correctly under Windows 11 Terminal 2. Fixed crash when configure script hands control off to installer 3. Kill install subprocess on keyboard interrupt 4. Command-line functionality for --yes configuration and model installation restored. 5. New command-line features: - install/delete lists of diffusers, LoRAS, controlnets and textual inversions using repo ids, paths or URLs. Help: ``` usage: invokeai-model-install [-h] [--diffusers [DIFFUSERS ...]] [--loras [LORAS ...]] [--controlnets [CONTROLNETS ...]] [--textual-inversions [TEXTUAL_INVERSIONS ...]] [--delete] [--full-precision | --no-full-precision] [--yes] [--default_only] [--list-models {diffusers,loras,controlnets,tis}] [--config_file CONFIG_FILE] [--root_dir ROOT] InvokeAI model downloader options: -h, --help show this help message and exit --diffusers [DIFFUSERS ...] List of URLs or repo_ids of diffusers to install/delete --loras [LORAS ...] List of URLs or repo_ids of LoRA/LyCORIS models to install/delete --controlnets [CONTROLNETS ...] List of URLs or repo_ids of controlnet models to install/delete --textual-inversions [TEXTUAL_INVERSIONS ...] List of URLs or repo_ids of textual inversion embeddings to install/delete --delete Delete models listed on command line rather than installing them --full-precision, --no-full-precision use 32-bit weights instead of faster 16-bit weights (default: False) --yes, -y answer "yes" to all prompts --default_only only install the default model --list-models {diffusers,loras,controlnets,tis} list installed models --config_file CONFIG_FILE, -c CONFIG_FILE path to configuration file to create --root_dir ROOT path to root of install directory ```
2023-06-06 01:45:35 +00:00
def recommended_datasets() -> List['str']:
datasets = set()
for ds in initial_models().keys():
if initial_models()[ds].get("recommended", False):
Multiple fixes 1. Model installer works correctly under Windows 11 Terminal 2. Fixed crash when configure script hands control off to installer 3. Kill install subprocess on keyboard interrupt 4. Command-line functionality for --yes configuration and model installation restored. 5. New command-line features: - install/delete lists of diffusers, LoRAS, controlnets and textual inversions using repo ids, paths or URLs. Help: ``` usage: invokeai-model-install [-h] [--diffusers [DIFFUSERS ...]] [--loras [LORAS ...]] [--controlnets [CONTROLNETS ...]] [--textual-inversions [TEXTUAL_INVERSIONS ...]] [--delete] [--full-precision | --no-full-precision] [--yes] [--default_only] [--list-models {diffusers,loras,controlnets,tis}] [--config_file CONFIG_FILE] [--root_dir ROOT] InvokeAI model downloader options: -h, --help show this help message and exit --diffusers [DIFFUSERS ...] List of URLs or repo_ids of diffusers to install/delete --loras [LORAS ...] List of URLs or repo_ids of LoRA/LyCORIS models to install/delete --controlnets [CONTROLNETS ...] List of URLs or repo_ids of controlnet models to install/delete --textual-inversions [TEXTUAL_INVERSIONS ...] List of URLs or repo_ids of textual inversion embeddings to install/delete --delete Delete models listed on command line rather than installing them --full-precision, --no-full-precision use 32-bit weights instead of faster 16-bit weights (default: False) --yes, -y answer "yes" to all prompts --default_only only install the default model --list-models {diffusers,loras,controlnets,tis} list installed models --config_file CONFIG_FILE, -c CONFIG_FILE path to configuration file to create --root_dir ROOT path to root of install directory ```
2023-06-06 01:45:35 +00:00
datasets.add(ds)
return list(datasets)
# ---------------------------------------------
def default_dataset() -> dict:
Multiple fixes 1. Model installer works correctly under Windows 11 Terminal 2. Fixed crash when configure script hands control off to installer 3. Kill install subprocess on keyboard interrupt 4. Command-line functionality for --yes configuration and model installation restored. 5. New command-line features: - install/delete lists of diffusers, LoRAS, controlnets and textual inversions using repo ids, paths or URLs. Help: ``` usage: invokeai-model-install [-h] [--diffusers [DIFFUSERS ...]] [--loras [LORAS ...]] [--controlnets [CONTROLNETS ...]] [--textual-inversions [TEXTUAL_INVERSIONS ...]] [--delete] [--full-precision | --no-full-precision] [--yes] [--default_only] [--list-models {diffusers,loras,controlnets,tis}] [--config_file CONFIG_FILE] [--root_dir ROOT] InvokeAI model downloader options: -h, --help show this help message and exit --diffusers [DIFFUSERS ...] List of URLs or repo_ids of diffusers to install/delete --loras [LORAS ...] List of URLs or repo_ids of LoRA/LyCORIS models to install/delete --controlnets [CONTROLNETS ...] List of URLs or repo_ids of controlnet models to install/delete --textual-inversions [TEXTUAL_INVERSIONS ...] List of URLs or repo_ids of textual inversion embeddings to install/delete --delete Delete models listed on command line rather than installing them --full-precision, --no-full-precision use 32-bit weights instead of faster 16-bit weights (default: False) --yes, -y answer "yes" to all prompts --default_only only install the default model --list-models {diffusers,loras,controlnets,tis} list installed models --config_file CONFIG_FILE, -c CONFIG_FILE path to configuration file to create --root_dir ROOT path to root of install directory ```
2023-06-06 01:45:35 +00:00
datasets = set()
for ds in initial_models().keys():
if initial_models()[ds].get("default", False):
Multiple fixes 1. Model installer works correctly under Windows 11 Terminal 2. Fixed crash when configure script hands control off to installer 3. Kill install subprocess on keyboard interrupt 4. Command-line functionality for --yes configuration and model installation restored. 5. New command-line features: - install/delete lists of diffusers, LoRAS, controlnets and textual inversions using repo ids, paths or URLs. Help: ``` usage: invokeai-model-install [-h] [--diffusers [DIFFUSERS ...]] [--loras [LORAS ...]] [--controlnets [CONTROLNETS ...]] [--textual-inversions [TEXTUAL_INVERSIONS ...]] [--delete] [--full-precision | --no-full-precision] [--yes] [--default_only] [--list-models {diffusers,loras,controlnets,tis}] [--config_file CONFIG_FILE] [--root_dir ROOT] InvokeAI model downloader options: -h, --help show this help message and exit --diffusers [DIFFUSERS ...] List of URLs or repo_ids of diffusers to install/delete --loras [LORAS ...] List of URLs or repo_ids of LoRA/LyCORIS models to install/delete --controlnets [CONTROLNETS ...] List of URLs or repo_ids of controlnet models to install/delete --textual-inversions [TEXTUAL_INVERSIONS ...] List of URLs or repo_ids of textual inversion embeddings to install/delete --delete Delete models listed on command line rather than installing them --full-precision, --no-full-precision use 32-bit weights instead of faster 16-bit weights (default: False) --yes, -y answer "yes" to all prompts --default_only only install the default model --list-models {diffusers,loras,controlnets,tis} list installed models --config_file CONFIG_FILE, -c CONFIG_FILE path to configuration file to create --root_dir ROOT path to root of install directory ```
2023-06-06 01:45:35 +00:00
datasets.add(ds)
return list(datasets)
# ---------------------------------------------
def all_datasets() -> dict:
datasets = dict()
for ds in initial_models().keys():
datasets[ds] = True
return datasets
# ---------------------------------------------
# look for legacy model.ckpt in models directory and offer to
# normalize its name
def migrate_models_ckpt():
model_path = os.path.join(config.root_dir, Model_dir, Weights_dir)
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
return
new_name = initial_models()["stable-diffusion-1.4"]["file"]
logger.warning(
2023-03-03 06:02:00 +00:00
'The Stable Diffusion v4.1 "model.ckpt" is already installed. The name will be changed to {new_name} to avoid confusion.'
)
logger.warning(f"model.ckpt => {new_name}")
os.replace(
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
)
# ---------------------------------------------
def download_weight_datasets(
models: List[str], access_token: str, precision: str = "float32"
):
migrate_models_ckpt()
successful = dict()
for mod in models:
logger.info(f"Downloading {mod}:")
successful[mod] = _download_repo_or_file(
initial_models()[mod], access_token, precision=precision
)
return successful
def _download_repo_or_file(
mconfig: DictConfig, access_token: str, precision: str = "float32"
) -> Path:
path = None
if mconfig["format"] == "ckpt":
path = _download_ckpt_weights(mconfig, access_token)
else:
path = _download_diffusion_weights(mconfig, access_token, precision=precision)
if "vae" in mconfig and "repo_id" in mconfig["vae"]:
_download_diffusion_weights(
mconfig["vae"], access_token, precision=precision
)
return path
def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
repo_id = mconfig["repo_id"]
filename = mconfig["file"]
cache_dir = os.path.join(config.root_dir, Model_dir, Weights_dir)
return hf_download_with_resume(
repo_id=repo_id,
model_dir=cache_dir,
model_name=filename,
access_token=access_token,
)
# ---------------------------------------------
def download_from_hf(
model_class: object, model_name: str, **kwargs
):
Multiple fixes 1. Model installer works correctly under Windows 11 Terminal 2. Fixed crash when configure script hands control off to installer 3. Kill install subprocess on keyboard interrupt 4. Command-line functionality for --yes configuration and model installation restored. 5. New command-line features: - install/delete lists of diffusers, LoRAS, controlnets and textual inversions using repo ids, paths or URLs. Help: ``` usage: invokeai-model-install [-h] [--diffusers [DIFFUSERS ...]] [--loras [LORAS ...]] [--controlnets [CONTROLNETS ...]] [--textual-inversions [TEXTUAL_INVERSIONS ...]] [--delete] [--full-precision | --no-full-precision] [--yes] [--default_only] [--list-models {diffusers,loras,controlnets,tis}] [--config_file CONFIG_FILE] [--root_dir ROOT] InvokeAI model downloader options: -h, --help show this help message and exit --diffusers [DIFFUSERS ...] List of URLs or repo_ids of diffusers to install/delete --loras [LORAS ...] List of URLs or repo_ids of LoRA/LyCORIS models to install/delete --controlnets [CONTROLNETS ...] List of URLs or repo_ids of controlnet models to install/delete --textual-inversions [TEXTUAL_INVERSIONS ...] List of URLs or repo_ids of textual inversion embeddings to install/delete --delete Delete models listed on command line rather than installing them --full-precision, --no-full-precision use 32-bit weights instead of faster 16-bit weights (default: False) --yes, -y answer "yes" to all prompts --default_only only install the default model --list-models {diffusers,loras,controlnets,tis} list installed models --config_file CONFIG_FILE, -c CONFIG_FILE path to configuration file to create --root_dir ROOT path to root of install directory ```
2023-06-06 01:45:35 +00:00
logger = InvokeAILogger.getLogger('InvokeAI')
logger.addFilter(lambda x: 'fp16 is not a valid' not in x.getMessage())
path = config.cache_dir
model = model_class.from_pretrained(
model_name,
cache_dir=path,
resume_download=True,
**kwargs,
)
model_name = "--".join(("models", *model_name.split("/")))
return path / model_name if model else None
def _download_diffusion_weights(
mconfig: DictConfig, access_token: str, precision: str = "float32"
):
repo_id = mconfig["repo_id"]
model_class = (
StableDiffusionGeneratorPipeline
if mconfig.get("format", None) == "diffusers"
else AutoencoderKL
)
extra_arg_list = [{"revision": "fp16"}, {}] if precision == "float16" else [{}]
path = None
for extra_args in extra_arg_list:
try:
path = download_from_hf(
model_class,
repo_id,
safety_checker=None,
**extra_args,
)
except OSError as e:
if 'Revision Not Found' in str(e):
pass
else:
logger.error(str(e))
if path:
break
return path
# ---------------------------------------------
def hf_download_with_resume(
2023-05-30 17:49:43 +00:00
repo_id: str,
model_dir: str,
model_name: str,
model_dest: Path = None,
access_token: str = None,
) -> Path:
2023-05-30 17:49:43 +00:00
model_dest = model_dest or Path(os.path.join(model_dir, model_name))
os.makedirs(model_dir, exist_ok=True)
url = hf_hub_url(repo_id, model_name)
header = {"Authorization": f"Bearer {access_token}"} if access_token else {}
open_mode = "wb"
exist_size = 0
if os.path.exists(model_dest):
exist_size = os.path.getsize(model_dest)
header["Range"] = f"bytes={exist_size}-"
open_mode = "ab"
resp = requests.get(url, headers=header, stream=True)
total = int(resp.headers.get("content-length", 0))
if (
resp.status_code == 416
): # "range not satisfiable", which means nothing to return
logger.info(f"{model_name}: complete file found. Skipping.")
return model_dest
2023-05-30 17:49:43 +00:00
elif resp.status_code == 404:
logger.warning("File not found")
2023-05-30 17:49:43 +00:00
return None
elif resp.status_code != 200:
logger.warning(f"{model_name}: {resp.reason}")
elif exist_size > 0:
logger.info(f"{model_name}: partial file found. Resuming...")
else:
logger.info(f"{model_name}: Downloading...")
try:
with open(model_dest, open_mode) as file, tqdm(
desc=model_name,
initial=exist_size,
total=total + exist_size,
unit="iB",
unit_scale=True,
unit_divisor=1000,
) as bar:
for data in resp.iter_content(chunk_size=1024):
size = file.write(data)
bar.update(size)
except Exception as e:
logger.error(f"An error occurred while downloading {model_name}: {str(e)}")
return None
return model_dest
# ---------------------------------------------
def update_config_file(successfully_downloaded: dict, config_file: Path):
config_file = (
Path(config_file) if config_file is not None else default_config_file()
)
# In some cases (incomplete setup, etc), the default configs directory might be missing.
# Create it if it doesn't exist.
# this check is ignored if opt.config_file is specified - user is assumed to know what they
# are doing if they are passing a custom config file from elsewhere.
if config_file is default_config_file() and not config_file.parent.exists():
configs_src = Dataset_path.parent
configs_dest = default_config_file().parent
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
yaml = new_config_file_contents(successfully_downloaded, config_file)
try:
backup = None
if os.path.exists(config_file):
logger.warning(
f"{config_file.name} exists. Renaming to {config_file.stem}.yaml.orig"
)
backup = config_file.with_suffix(".yaml.orig")
## Ugh. Windows is unable to overwrite an existing backup file, raises a WinError 183
if sys.platform == "win32" and backup.is_file():
backup.unlink()
config_file.rename(backup)
with TemporaryFile() as tmp:
tmp.write(Config_preamble.encode())
tmp.write(yaml.encode())
with open(str(config_file.expanduser().resolve()), "wb") as new_config:
tmp.seek(0)
new_config.write(tmp.read())
except Exception as e:
logger.error(f"Error creating config file {config_file}: {str(e)}")
if backup is not None:
logger.info("restoring previous config file")
## workaround, for WinError 183, see above
if sys.platform == "win32" and config_file.is_file():
config_file.unlink()
backup.rename(config_file)
return
logger.info(f"Successfully created new configuration file {config_file}")
# ---------------------------------------------
def new_config_file_contents(
2023-03-03 06:02:00 +00:00
successfully_downloaded: dict,
config_file: Path,
) -> str:
if config_file.exists():
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
else:
conf = OmegaConf.create()
default_selected = None
for model in successfully_downloaded:
# a bit hacky - what we are doing here is seeing whether a checkpoint
# version of the model was previously defined, and whether the current
# model is a diffusers (indicated with a path)
if conf.get(model) and Path(successfully_downloaded[model]).is_dir():
delete_weights(model, conf[model])
stanza = {}
mod = initial_models()[model]
stanza["description"] = mod["description"]
stanza["repo_id"] = mod["repo_id"]
stanza["format"] = mod["format"]
# diffusers don't need width and height (probably .ckpt doesn't either)
# so we no longer require these in INITIAL_MODELS.yaml
if "width" in mod:
stanza["width"] = mod["width"]
if "height" in mod:
stanza["height"] = mod["height"]
if "file" in mod:
stanza["weights"] = os.path.relpath(
successfully_downloaded[model], start=config.root_dir
)
2023-03-03 06:02:00 +00:00
stanza["config"] = os.path.normpath(
os.path.join(sd_configs(), mod["config"])
)
if "vae" in mod:
if "file" in mod["vae"]:
stanza["vae"] = os.path.normpath(
os.path.join(Model_dir, Weights_dir, mod["vae"]["file"])
)
else:
stanza["vae"] = mod["vae"]
if mod.get("default", False):
stanza["default"] = True
default_selected = True
conf[model] = stanza
# if no default model was chosen, then we select the first
# one in the list
if not default_selected:
conf[list(successfully_downloaded.keys())[0]]["default"] = True
return OmegaConf.to_yaml(conf)
# ---------------------------------------------
def delete_weights(model_name: str, conf_stanza: dict):
if not (weights := conf_stanza.get("weights")):
return
if re.match("/VAE/", conf_stanza.get("config")):
return
logger.warning(
f"\nThe checkpoint version of {model_name} is superseded by the diffusers version. Deleting the original file {weights}?"
)
2023-03-03 06:02:00 +00:00
weights = Path(weights)
if not weights.is_absolute():
weights = config.root_dir / weights
try:
weights.unlink()
except OSError as e:
logger.error(str(e))