InvokeAI/invokeai/backend/model_management/model_probe.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

451 lines
18 KiB
Python
Raw Normal View History

import json
import torch
import safetensors.torch
from dataclasses import dataclass
from diffusers import ModelMixin, ConfigMixin
from pathlib import Path
2023-07-03 16:17:45 +00:00
from typing import Callable, Literal, Union, Dict, Optional
from picklescan.scanner import scan_file_path
from .models import (
BaseModelType, ModelType, ModelVariantType,
SchedulerPredictionType, SilenceWarnings,
)
from .models.base import read_checkpoint_meta
@dataclass
class ModelProbeInfo(object):
model_type: ModelType
base_type: BaseModelType
variant_type: ModelVariantType
prediction_type: SchedulerPredictionType
upcast_attention: bool
format: Literal['diffusers','checkpoint', 'lycoris']
image_size: int
class ProbeBase(object):
'''forward declaration'''
pass
class ModelProbe(object):
PROBES = {
'diffusers': { },
'checkpoint': { },
}
CLASS2TYPE = {
'StableDiffusionPipeline' : ModelType.Main,
'AutoencoderKL' : ModelType.Vae,
'ControlNetModel' : ModelType.ControlNet,
}
@classmethod
def register_probe(cls,
format: Literal['diffusers','checkpoint'],
model_type: ModelType,
probe_class: ProbeBase):
cls.PROBES[format][model_type] = probe_class
@classmethod
def heuristic_probe(cls,
model: Union[Dict, ModelMixin, Path],
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None,
)->ModelProbeInfo:
if isinstance(model,Path):
return cls.probe(model_path=model,prediction_type_helper=prediction_type_helper)
elif isinstance(model,(dict,ModelMixin,ConfigMixin)):
return cls.probe(model_path=None, model=model, prediction_type_helper=prediction_type_helper)
else:
raise Exception("model parameter {model} is neither a Path, nor a model")
@classmethod
def probe(cls,
model_path: Path,
model: Optional[Union[Dict, ModelMixin]] = None,
prediction_type_helper: Optional[Callable[[Path],SchedulerPredictionType]] = None)->ModelProbeInfo:
'''
Probe the model at model_path and return sufficient information about it
to place it somewhere in the models directory hierarchy. If the model is
already loaded into memory, you may provide it as model in order to avoid
opening it a second time. The prediction_type_helper callable is a function that receives
the path to the model and returns the BaseModelType. It is called to distinguish
between V2-Base and V2-768 SD models.
'''
if model_path:
format_type = 'diffusers' if model_path.is_dir() else 'checkpoint'
else:
format_type = 'diffusers' if isinstance(model,(ConfigMixin,ModelMixin)) else 'checkpoint'
model_info = None
try:
model_type = cls.get_model_type_from_folder(model_path, model) \
if format_type == 'diffusers' \
else cls.get_model_type_from_checkpoint(model_path, model)
probe_class = cls.PROBES[format_type].get(model_type)
if not probe_class:
return None
probe = probe_class(model_path, model, prediction_type_helper)
base_type = probe.get_base_type()
variant_type = probe.get_variant_type()
prediction_type = probe.get_scheduler_prediction_type()
format = probe.get_format()
model_info = ModelProbeInfo(
model_type = model_type,
base_type = base_type,
variant_type = variant_type,
prediction_type = prediction_type,
upcast_attention = (base_type==BaseModelType.StableDiffusion2 \
and prediction_type==SchedulerPredictionType.VPrediction),
format = format,
image_size = 768 if (base_type==BaseModelType.StableDiffusion2 \
and prediction_type==SchedulerPredictionType.VPrediction \
) else 512,
)
except Exception:
return None
return model_info
@classmethod
def get_model_type_from_checkpoint(cls, model_path: Path, checkpoint: dict) -> ModelType:
if model_path.suffix not in ('.bin','.pt','.ckpt','.safetensors','.pth'):
return None
if model_path.name == "learned_embeds.bin":
return ModelType.TextualInversion
ckpt = checkpoint if checkpoint else read_checkpoint_meta(model_path, scan=True)
ckpt = ckpt.get("state_dict", ckpt)
for key in ckpt.keys():
if any(key.startswith(v) for v in {"cond_stage_model.", "first_stage_model.", "model.diffusion_model."}):
return ModelType.Main
elif any(key.startswith(v) for v in {"encoder.conv_in", "decoder.conv_in"}):
return ModelType.Vae
elif any(key.startswith(v) for v in {"lora_te_", "lora_unet_"}):
return ModelType.Lora
elif any(key.startswith(v) for v in {"control_model", "input_blocks"}):
return ModelType.ControlNet
elif key in {"emb_params", "string_to_param"}:
return ModelType.TextualInversion
else:
# diffusers-ti
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
return ModelType.TextualInversion
raise ValueError("Unable to determine model type")
@classmethod
def get_model_type_from_folder(cls, folder_path: Path, model: ModelMixin)->ModelType:
'''
Get the model type of a hugging-face style folder.
'''
class_name = None
if model:
class_name = model.__class__.__name__
else:
if (folder_path / 'learned_embeds.bin').exists():
return ModelType.TextualInversion
if (folder_path / 'pytorch_lora_weights.bin').exists():
return ModelType.Lora
i = folder_path / 'model_index.json'
c = folder_path / 'config.json'
config_path = i if i.exists() else c if c.exists() else None
if config_path:
with open(config_path,'r') as file:
conf = json.load(file)
class_name = conf['_class_name']
if class_name and (type := cls.CLASS2TYPE.get(class_name)):
return type
# give up
raise ValueError("Unable to determine model type")
@classmethod
def _scan_and_load_checkpoint(cls,model_path: Path)->dict:
with SilenceWarnings():
if model_path.suffix.endswith((".ckpt", ".pt", ".bin")):
cls._scan_model(model_path, model_path)
return torch.load(model_path)
else:
return safetensors.torch.load_file(model_path)
@classmethod
def _scan_model(cls, model_name, checkpoint):
"""
Apply picklescanner to the indicated checkpoint and issue a warning
and option to exit if an infected file is identified.
"""
# scan model
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
raise "The model {model_name} is potentially infected by malware. Aborting import."
###################################################3
# Checkpoint probing
###################################################3
class ProbeBase(object):
def get_base_type(self)->BaseModelType:
pass
def get_variant_type(self)->ModelVariantType:
pass
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
pass
def get_format(self)->str:
pass
class CheckpointProbeBase(ProbeBase):
def __init__(self,
checkpoint_path: Path,
checkpoint: dict,
helper: Callable[[Path],SchedulerPredictionType] = None
)->BaseModelType:
self.checkpoint = checkpoint or ModelProbe._scan_and_load_checkpoint(checkpoint_path)
self.checkpoint_path = checkpoint_path
self.helper = helper
def get_base_type(self)->BaseModelType:
pass
def get_format(self)->str:
return 'checkpoint'
def get_variant_type(self)-> ModelVariantType:
model_type = ModelProbe.get_model_type_from_checkpoint(self.checkpoint_path,self.checkpoint)
if model_type != ModelType.Main:
return ModelVariantType.Normal
state_dict = self.checkpoint.get('state_dict') or self.checkpoint
in_channels = state_dict[
"model.diffusion_model.input_blocks.0.0.weight"
].shape[1]
if in_channels == 9:
return ModelVariantType.Inpaint
elif in_channels == 5:
return ModelVariantType.Depth
elif in_channels == 4:
return ModelVariantType.Normal
else:
raise Exception("Cannot determine variant type")
class PipelineCheckpointProbe(CheckpointProbeBase):
def get_base_type(self)->BaseModelType:
checkpoint = self.checkpoint
state_dict = self.checkpoint.get('state_dict') or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 768:
return BaseModelType.StableDiffusion1
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
return BaseModelType.StableDiffusion2
raise Exception("Cannot determine base type")
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
type = self.get_base_type()
if type == BaseModelType.StableDiffusion1:
return SchedulerPredictionType.Epsilon
checkpoint = self.checkpoint
state_dict = self.checkpoint.get('state_dict') or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
if 'global_step' in checkpoint:
if checkpoint['global_step'] == 220000:
return SchedulerPredictionType.Epsilon
elif checkpoint["global_step"] == 110000:
return SchedulerPredictionType.VPrediction
if self.checkpoint_path and self.helper \
and not self.checkpoint_path.with_suffix('.yaml').exists(): # if a .yaml config file exists, then this step not needed
return self.helper(self.checkpoint_path)
else:
return None
class VaeCheckpointProbe(CheckpointProbeBase):
def get_base_type(self)->BaseModelType:
# I can't find any standalone 2.X VAEs to test with!
return BaseModelType.StableDiffusion1
class LoRACheckpointProbe(CheckpointProbeBase):
def get_format(self)->str:
return 'lycoris'
def get_base_type(self)->BaseModelType:
checkpoint = self.checkpoint
key1 = "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight"
key2 = "lora_te_text_model_encoder_layers_0_self_attn_k_proj.hada_w1_a"
lora_token_vector_length = (
checkpoint[key1].shape[1]
if key1 in checkpoint
else checkpoint[key2].shape[0]
if key2 in checkpoint
else 768
)
if lora_token_vector_length == 768:
return BaseModelType.StableDiffusion1
elif lora_token_vector_length == 1024:
return BaseModelType.StableDiffusion2
else:
return None
class TextualInversionCheckpointProbe(CheckpointProbeBase):
def get_format(self)->str:
return None
def get_base_type(self)->BaseModelType:
checkpoint = self.checkpoint
if 'string_to_token' in checkpoint:
token_dim = list(checkpoint['string_to_param'].values())[0].shape[-1]
elif 'emb_params' in checkpoint:
token_dim = checkpoint['emb_params'].shape[-1]
else:
token_dim = list(checkpoint.values())[0].shape[0]
if token_dim == 768:
return BaseModelType.StableDiffusion1
elif token_dim == 1024:
return BaseModelType.StableDiffusion2
else:
return None
class ControlNetCheckpointProbe(CheckpointProbeBase):
def get_base_type(self)->BaseModelType:
checkpoint = self.checkpoint
for key_name in ('control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight',
'input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight'
):
if key_name not in checkpoint:
continue
if checkpoint[key_name].shape[-1] == 768:
return BaseModelType.StableDiffusion1
elif checkpoint[key_name].shape[-1] == 1024:
return BaseModelType.StableDiffusion2
elif self.checkpoint_path and self.helper:
return self.helper(self.checkpoint_path)
raise Exception("Unable to determine base type for {self.checkpoint_path}")
########################################################
# classes for probing folders
#######################################################
class FolderProbeBase(ProbeBase):
def __init__(self,
folder_path: Path,
model: ModelMixin = None,
helper: Callable=None # not used
):
self.model = model
self.folder_path = folder_path
def get_variant_type(self)->ModelVariantType:
return ModelVariantType.Normal
def get_format(self)->str:
return 'diffusers'
class PipelineFolderProbe(FolderProbeBase):
def get_base_type(self)->BaseModelType:
if self.model:
unet_conf = self.model.unet.config
else:
with open(self.folder_path / 'unet' / 'config.json','r') as file:
unet_conf = json.load(file)
if unet_conf['cross_attention_dim'] == 768:
return BaseModelType.StableDiffusion1
elif unet_conf['cross_attention_dim'] == 1024:
return BaseModelType.StableDiffusion2
else:
raise ValueError(f'Unknown base model for {self.folder_path}')
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
if self.model:
scheduler_conf = self.model.scheduler.config
else:
with open(self.folder_path / 'scheduler' / 'scheduler_config.json','r') as file:
scheduler_conf = json.load(file)
if scheduler_conf['prediction_type'] == "v_prediction":
return SchedulerPredictionType.VPrediction
elif scheduler_conf['prediction_type'] == 'epsilon':
return SchedulerPredictionType.Epsilon
else:
return None
def get_variant_type(self)->ModelVariantType:
# This only works for pipelines! Any kind of
# exception results in our returning the
# "normal" variant type
try:
if self.model:
conf = self.model.unet.config
else:
config_file = self.folder_path / 'unet' / 'config.json'
with open(config_file,'r') as file:
conf = json.load(file)
in_channels = conf['in_channels']
if in_channels == 9:
return ModelVariantType.Inpainting
elif in_channels == 5:
return ModelVariantType.Depth
elif in_channels == 4:
return ModelVariantType.Normal
except:
pass
return ModelVariantType.Normal
class VaeFolderProbe(FolderProbeBase):
def get_base_type(self)->BaseModelType:
return BaseModelType.StableDiffusion1
class TextualInversionFolderProbe(FolderProbeBase):
def get_format(self)->str:
return None
def get_base_type(self)->BaseModelType:
path = self.folder_path / 'learned_embeds.bin'
if not path.exists():
return None
checkpoint = ModelProbe._scan_and_load_checkpoint(path)
return TextualInversionCheckpointProbe(None,checkpoint=checkpoint).get_base_type()
class ControlNetFolderProbe(FolderProbeBase):
def get_base_type(self)->BaseModelType:
config_file = self.folder_path / 'config.json'
if not config_file.exists():
raise Exception(f"Cannot determine base type for {self.folder_path}")
with open(config_file,'r') as file:
config = json.load(file)
# no obvious way to distinguish between sd2-base and sd2-768
return BaseModelType.StableDiffusion1 \
if config['cross_attention_dim']==768 \
else BaseModelType.StableDiffusion2
class LoRAFolderProbe(FolderProbeBase):
2023-06-20 15:08:27 +00:00
def get_base_type(self)->BaseModelType:
model_file = None
for suffix in ['safetensors','bin']:
base_file = self.folder_path / f'pytorch_lora_weights.{suffix}'
if base_file.exists():
model_file = base_file
break
if not model_file:
raise Exception('Unknown LoRA format encountered')
return LoRACheckpointProbe(model_file,None).get_base_type()
############## register probe classes ######
ModelProbe.register_probe('diffusers', ModelType.Main, PipelineFolderProbe)
ModelProbe.register_probe('diffusers', ModelType.Vae, VaeFolderProbe)
ModelProbe.register_probe('diffusers', ModelType.Lora, LoRAFolderProbe)
ModelProbe.register_probe('diffusers', ModelType.TextualInversion, TextualInversionFolderProbe)
ModelProbe.register_probe('diffusers', ModelType.ControlNet, ControlNetFolderProbe)
ModelProbe.register_probe('checkpoint', ModelType.Main, PipelineCheckpointProbe)
ModelProbe.register_probe('checkpoint', ModelType.Vae, VaeCheckpointProbe)
ModelProbe.register_probe('checkpoint', ModelType.Lora, LoRACheckpointProbe)
ModelProbe.register_probe('checkpoint', ModelType.TextualInversion, TextualInversionCheckpointProbe)
ModelProbe.register_probe('checkpoint', ModelType.ControlNet, ControlNetCheckpointProbe)