InvokeAI/tests/test_model_probe.py

89 lines
3.6 KiB
Python
Raw Normal View History

from pathlib import Path
import pytest
from torch import tensor
from invokeai.backend.model_manager import BaseModelType, ModelRepoVariant
from invokeai.backend.model_manager.config import InvalidModelConfigException, MainDiffusersConfig, ModelVariantType
2024-03-12 23:02:55 +00:00
from invokeai.backend.model_manager.probe import (
CkptType,
ModelProbe,
2024-03-12 23:02:55 +00:00
VaeFolderProbe,
get_default_settings_controlnet_t2i_adapter,
get_default_settings_main,
)
2023-09-20 19:53:25 +00:00
@pytest.mark.parametrize(
"vae_path,expected_type",
[
("sd-vae-ft-mse", BaseModelType.StableDiffusion1),
("sdxl-vae", BaseModelType.StableDiffusionXL),
("taesd", BaseModelType.StableDiffusion1),
("taesdxl", BaseModelType.StableDiffusionXL),
],
)
def test_get_base_type(vae_path: str, expected_type: BaseModelType, datadir: Path):
sd1_vae_path = datadir / "vae" / vae_path
probe = VaeFolderProbe(sd1_vae_path)
base_type = probe.get_base_type()
assert base_type == expected_type
2024-01-22 19:37:23 +00:00
repo_variant = probe.get_repo_variant()
assert repo_variant == ModelRepoVariant.Default
2024-02-01 04:37:59 +00:00
2024-01-22 19:37:23 +00:00
def test_repo_variant(datadir: Path):
probe = VaeFolderProbe(datadir / "vae" / "taesdxl-fp16")
repo_variant = probe.get_repo_variant()
assert repo_variant == ModelRepoVariant.FP16
def test_controlnet_t2i_default_settings():
2024-03-12 23:02:55 +00:00
assert get_default_settings_controlnet_t2i_adapter("some_canny_model").preprocessor == "canny_image_processor"
assert (
get_default_settings_controlnet_t2i_adapter("some_depth_model").preprocessor == "depth_anything_image_processor"
)
assert get_default_settings_controlnet_t2i_adapter("some_pose_model").preprocessor == "dw_openpose_image_processor"
assert get_default_settings_controlnet_t2i_adapter("i like turtles") is None
def test_default_settings_main():
assert get_default_settings_main(BaseModelType.StableDiffusion1).width == 512
assert get_default_settings_main(BaseModelType.StableDiffusion1).height == 512
assert get_default_settings_main(BaseModelType.StableDiffusion2).width == 512
assert get_default_settings_main(BaseModelType.StableDiffusion2).height == 512
assert get_default_settings_main(BaseModelType.StableDiffusionXL).width == 1024
assert get_default_settings_main(BaseModelType.StableDiffusionXL).height == 1024
assert get_default_settings_main(BaseModelType.StableDiffusionXLRefiner) is None
assert get_default_settings_main(BaseModelType.Any) is None
def test_probe_handles_state_dict_with_integer_keys():
# This structure isn't supported by invoke, but we still need to handle it gracefully. See #6044
state_dict_with_integer_keys: CkptType = {
320: (
{
"linear1.weight": tensor([1.0]),
"linear1.bias": tensor([1.0]),
"linear2.weight": tensor([1.0]),
"linear2.bias": tensor([1.0]),
},
{
"linear1.weight": tensor([1.0]),
"linear1.bias": tensor([1.0]),
"linear2.weight": tensor([1.0]),
"linear2.bias": tensor([1.0]),
},
),
}
with pytest.raises(InvalidModelConfigException):
ModelProbe.get_model_type_from_checkpoint(Path("embedding.pt"), state_dict_with_integer_keys)
def test_probe_sd1_diffusers_inpainting(datadir: Path):
config = ModelProbe.probe(datadir / "sd-1/main/dreamshaper-8-inpainting")
assert isinstance(config, MainDiffusersConfig)
assert config.base is BaseModelType.StableDiffusion1
assert config.variant is ModelVariantType.Inpaint
assert config.repo_variant is ModelRepoVariant.FP16