2022-12-01 05:33:20 +00:00
|
|
|
import os
|
|
|
|
import sys
|
2023-03-09 05:18:29 +00:00
|
|
|
import torch
|
2022-12-01 05:33:20 +00:00
|
|
|
import traceback
|
2023-03-03 06:02:00 +00:00
|
|
|
from argparse import Namespace
|
2023-03-09 05:18:29 +00:00
|
|
|
from omegaconf import OmegaConf
|
2022-12-01 05:33:20 +00:00
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
import invokeai.version
|
remove factory pattern
Factory pattern is now removed. Typical usage of the InvokeAIGenerator is now:
```
from invokeai.backend.generator import (
InvokeAIGeneratorBasicParams,
Txt2Img,
Img2Img,
Inpaint,
)
params = InvokeAIGeneratorBasicParams(
model_name = 'stable-diffusion-1.5',
steps = 30,
scheduler = 'k_lms',
cfg_scale = 8.0,
height = 640,
width = 640
)
print ('=== TXT2IMG TEST ===')
txt2img = Txt2Img(manager, params)
outputs = txt2img.generate(prompt='banana sushi', iterations=2)
for i in outputs:
print(f'image={output.image}, seed={output.seed}, model={output.params.model_name}, hash={output.model_hash}, steps={output.params.steps}')
```
The `params` argument is optional, so if you wish to accept default
parameters and selectively override them, just do this:
```
outputs = Txt2Img(manager).generate(prompt='banana sushi',
steps=50,
scheduler='k_heun',
model_name='stable-diffusion-2.1'
)
```
2023-03-11 00:33:04 +00:00
|
|
|
from ...backend import ModelManager
|
2023-03-09 05:18:29 +00:00
|
|
|
from ...backend.util import choose_precision, choose_torch_device
|
2023-03-04 01:19:37 +00:00
|
|
|
from ...backend import Globals
|
2023-03-03 06:02:00 +00:00
|
|
|
|
2022-12-01 05:33:20 +00:00
|
|
|
# TODO: most of this code should be split into individual services as the Generate.py code is deprecated
|
remove factory pattern
Factory pattern is now removed. Typical usage of the InvokeAIGenerator is now:
```
from invokeai.backend.generator import (
InvokeAIGeneratorBasicParams,
Txt2Img,
Img2Img,
Inpaint,
)
params = InvokeAIGeneratorBasicParams(
model_name = 'stable-diffusion-1.5',
steps = 30,
scheduler = 'k_lms',
cfg_scale = 8.0,
height = 640,
width = 640
)
print ('=== TXT2IMG TEST ===')
txt2img = Txt2Img(manager, params)
outputs = txt2img.generate(prompt='banana sushi', iterations=2)
for i in outputs:
print(f'image={output.image}, seed={output.seed}, model={output.params.model_name}, hash={output.model_hash}, steps={output.params.steps}')
```
The `params` argument is optional, so if you wish to accept default
parameters and selectively override them, just do this:
```
outputs = Txt2Img(manager).generate(prompt='banana sushi',
steps=50,
scheduler='k_heun',
model_name='stable-diffusion-2.1'
)
```
2023-03-11 00:33:04 +00:00
|
|
|
def get_model_manager(args, config) -> ModelManager:
|
2022-12-01 05:33:20 +00:00
|
|
|
if not args.conf:
|
2023-03-03 06:02:00 +00:00
|
|
|
config_file = os.path.join(Globals.root, "configs", "models.yaml")
|
2022-12-01 05:33:20 +00:00
|
|
|
if not os.path.exists(config_file):
|
2023-03-03 06:02:00 +00:00
|
|
|
report_model_error(
|
|
|
|
args, FileNotFoundError(f"The file {config_file} could not be found.")
|
|
|
|
)
|
2022-12-01 05:33:20 +00:00
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
|
2022-12-01 05:33:20 +00:00
|
|
|
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
|
|
|
|
|
|
|
# these two lines prevent a horrible warning message from appearing
|
|
|
|
# when the frozen CLIP tokenizer is imported
|
|
|
|
import transformers # type: ignore
|
2023-03-03 06:02:00 +00:00
|
|
|
|
2022-12-01 05:33:20 +00:00
|
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
import diffusers
|
2023-03-03 06:02:00 +00:00
|
|
|
|
2022-12-01 05:33:20 +00:00
|
|
|
diffusers.logging.set_verbosity_error()
|
|
|
|
|
|
|
|
# Loading Face Restoration and ESRGAN Modules
|
2023-03-03 06:02:00 +00:00
|
|
|
gfpgan, codeformer, esrgan = load_face_restoration(args)
|
2022-12-01 05:33:20 +00:00
|
|
|
|
|
|
|
# normalize the config directory relative to root
|
|
|
|
if not os.path.isabs(args.conf):
|
2023-03-03 06:02:00 +00:00
|
|
|
args.conf = os.path.normpath(os.path.join(Globals.root, args.conf))
|
2022-12-01 05:33:20 +00:00
|
|
|
|
|
|
|
if args.embeddings:
|
|
|
|
if not os.path.isabs(args.embedding_path):
|
2023-03-03 06:02:00 +00:00
|
|
|
embedding_path = os.path.normpath(
|
|
|
|
os.path.join(Globals.root, args.embedding_path)
|
|
|
|
)
|
2022-12-01 05:33:20 +00:00
|
|
|
else:
|
|
|
|
embedding_path = args.embedding_path
|
|
|
|
else:
|
|
|
|
embedding_path = None
|
|
|
|
|
|
|
|
# migrate legacy models
|
|
|
|
ModelManager.migrate_models()
|
|
|
|
|
|
|
|
# load the infile as a list of lines
|
|
|
|
if args.infile:
|
|
|
|
try:
|
|
|
|
if os.path.isfile(args.infile):
|
2023-03-03 06:02:00 +00:00
|
|
|
infile = open(args.infile, "r", encoding="utf-8")
|
|
|
|
elif args.infile == "-": # stdin
|
2022-12-01 05:33:20 +00:00
|
|
|
infile = sys.stdin
|
|
|
|
else:
|
2023-03-03 06:02:00 +00:00
|
|
|
raise FileNotFoundError(f"{args.infile} not found.")
|
2022-12-01 05:33:20 +00:00
|
|
|
except (FileNotFoundError, IOError) as e:
|
2023-03-03 06:02:00 +00:00
|
|
|
print(f"{e}. Aborting.")
|
2022-12-01 05:33:20 +00:00
|
|
|
sys.exit(-1)
|
|
|
|
|
remove factory pattern
Factory pattern is now removed. Typical usage of the InvokeAIGenerator is now:
```
from invokeai.backend.generator import (
InvokeAIGeneratorBasicParams,
Txt2Img,
Img2Img,
Inpaint,
)
params = InvokeAIGeneratorBasicParams(
model_name = 'stable-diffusion-1.5',
steps = 30,
scheduler = 'k_lms',
cfg_scale = 8.0,
height = 640,
width = 640
)
print ('=== TXT2IMG TEST ===')
txt2img = Txt2Img(manager, params)
outputs = txt2img.generate(prompt='banana sushi', iterations=2)
for i in outputs:
print(f'image={output.image}, seed={output.seed}, model={output.params.model_name}, hash={output.model_hash}, steps={output.params.steps}')
```
The `params` argument is optional, so if you wish to accept default
parameters and selectively override them, just do this:
```
outputs = Txt2Img(manager).generate(prompt='banana sushi',
steps=50,
scheduler='k_heun',
model_name='stable-diffusion-2.1'
)
```
2023-03-11 00:33:04 +00:00
|
|
|
# creating the model manager
|
2022-12-01 05:33:20 +00:00
|
|
|
try:
|
2023-03-09 05:18:29 +00:00
|
|
|
device = torch.device(choose_torch_device())
|
|
|
|
precision = 'float16' if args.precision=='float16' \
|
|
|
|
else 'float32' if args.precision=='float32' \
|
|
|
|
else choose_precision(device)
|
|
|
|
|
|
|
|
model_manager = ModelManager(
|
|
|
|
OmegaConf.load(args.conf),
|
|
|
|
precision=precision,
|
|
|
|
device_type=device,
|
2023-03-03 06:02:00 +00:00
|
|
|
max_loaded_models=args.max_loaded_models,
|
|
|
|
)
|
2022-12-01 05:33:20 +00:00
|
|
|
except (FileNotFoundError, TypeError, AssertionError) as e:
|
2023-03-09 05:18:29 +00:00
|
|
|
report_model_error(args, e)
|
2022-12-01 05:33:20 +00:00
|
|
|
except (IOError, KeyError) as e:
|
2023-03-03 06:02:00 +00:00
|
|
|
print(f"{e}. Aborting.")
|
2022-12-01 05:33:20 +00:00
|
|
|
sys.exit(-1)
|
|
|
|
|
|
|
|
if args.seamless:
|
2023-03-09 05:18:29 +00:00
|
|
|
#TODO: do something here ?
|
2022-12-01 05:33:20 +00:00
|
|
|
print(">> changed to seamless tiling mode")
|
|
|
|
|
|
|
|
# try to autoconvert new models
|
|
|
|
# autoimport new .ckpt files
|
|
|
|
if path := args.autoconvert:
|
2023-03-09 05:18:29 +00:00
|
|
|
model_manager.autoconvert_weights(
|
2022-12-01 05:33:20 +00:00
|
|
|
conf_path=args.conf,
|
|
|
|
weights_directory=path,
|
|
|
|
)
|
2023-03-03 06:02:00 +00:00
|
|
|
|
remove factory pattern
Factory pattern is now removed. Typical usage of the InvokeAIGenerator is now:
```
from invokeai.backend.generator import (
InvokeAIGeneratorBasicParams,
Txt2Img,
Img2Img,
Inpaint,
)
params = InvokeAIGeneratorBasicParams(
model_name = 'stable-diffusion-1.5',
steps = 30,
scheduler = 'k_lms',
cfg_scale = 8.0,
height = 640,
width = 640
)
print ('=== TXT2IMG TEST ===')
txt2img = Txt2Img(manager, params)
outputs = txt2img.generate(prompt='banana sushi', iterations=2)
for i in outputs:
print(f'image={output.image}, seed={output.seed}, model={output.params.model_name}, hash={output.model_hash}, steps={output.params.steps}')
```
The `params` argument is optional, so if you wish to accept default
parameters and selectively override them, just do this:
```
outputs = Txt2Img(manager).generate(prompt='banana sushi',
steps=50,
scheduler='k_heun',
model_name='stable-diffusion-2.1'
)
```
2023-03-11 00:33:04 +00:00
|
|
|
return model_manager
|
2022-12-01 05:33:20 +00:00
|
|
|
|
|
|
|
def load_face_restoration(opt):
|
|
|
|
try:
|
|
|
|
gfpgan, codeformer, esrgan = None, None, None
|
|
|
|
if opt.restore or opt.esrgan:
|
2023-03-03 06:02:00 +00:00
|
|
|
from invokeai.backend.restoration import Restoration
|
|
|
|
|
2022-12-01 05:33:20 +00:00
|
|
|
restoration = Restoration()
|
|
|
|
if opt.restore:
|
2023-03-03 06:02:00 +00:00
|
|
|
gfpgan, codeformer = restoration.load_face_restore_models(
|
|
|
|
opt.gfpgan_model_path
|
|
|
|
)
|
2022-12-01 05:33:20 +00:00
|
|
|
else:
|
2023-03-03 06:02:00 +00:00
|
|
|
print(">> Face restoration disabled")
|
2022-12-01 05:33:20 +00:00
|
|
|
if opt.esrgan:
|
|
|
|
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
|
|
|
|
else:
|
2023-03-03 06:02:00 +00:00
|
|
|
print(">> Upscaling disabled")
|
2022-12-01 05:33:20 +00:00
|
|
|
else:
|
2023-03-03 06:02:00 +00:00
|
|
|
print(">> Face restoration and upscaling disabled")
|
2022-12-01 05:33:20 +00:00
|
|
|
except (ModuleNotFoundError, ImportError):
|
|
|
|
print(traceback.format_exc(), file=sys.stderr)
|
2023-03-03 06:02:00 +00:00
|
|
|
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
|
|
|
|
return gfpgan, codeformer, esrgan
|
2022-12-01 05:33:20 +00:00
|
|
|
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
def report_model_error(opt: Namespace, e: Exception):
|
2022-12-01 05:33:20 +00:00
|
|
|
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
|
2023-03-03 06:02:00 +00:00
|
|
|
print(
|
|
|
|
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
|
|
|
|
)
|
|
|
|
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
|
2022-12-01 05:33:20 +00:00
|
|
|
if yes_to_all:
|
2023-03-03 06:02:00 +00:00
|
|
|
print(
|
|
|
|
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
|
|
|
|
)
|
2022-12-01 05:33:20 +00:00
|
|
|
else:
|
2023-03-03 06:02:00 +00:00
|
|
|
response = input(
|
|
|
|
"Do you want to run invokeai-configure script to select and/or reinstall models? [y] "
|
|
|
|
)
|
|
|
|
if response.startswith(("n", "N")):
|
2022-12-01 05:33:20 +00:00
|
|
|
return
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
print("invokeai-configure is launching....\n")
|
2022-12-01 05:33:20 +00:00
|
|
|
|
|
|
|
# Match arguments that were set on the CLI
|
|
|
|
# only the arguments accepted by the configuration script are parsed
|
|
|
|
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
|
|
|
|
config = ["--config", opt.conf] if opt.conf is not None else []
|
|
|
|
previous_args = sys.argv
|
2023-03-03 06:02:00 +00:00
|
|
|
sys.argv = ["invokeai-configure"]
|
2022-12-01 05:33:20 +00:00
|
|
|
sys.argv.extend(root_dir)
|
|
|
|
sys.argv.extend(config)
|
|
|
|
if yes_to_all is not None:
|
|
|
|
for arg in yes_to_all.split():
|
|
|
|
sys.argv.append(arg)
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
from invokeai.frontend.install import invokeai_configure
|
|
|
|
|
|
|
|
invokeai_configure()
|
2022-12-01 05:33:20 +00:00
|
|
|
# TODO: Figure out how to restart
|
|
|
|
# print('** InvokeAI will now restart')
|
|
|
|
# sys.argv = previous_args
|
|
|
|
# main() # would rather do a os.exec(), but doesn't exist?
|
|
|
|
# sys.exit(0)
|