InvokeAI/invokeai/app/services/config.py

542 lines
22 KiB
Python
Raw Normal View History

# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team
2023-05-04 05:20:30 +00:00
'''Invokeai configuration system.
Arguments and fields are taken from the pydantic definition of the
model. Defaults can be set by creating a yaml configuration file that
has a top-level key of "InvokeAI" and subheadings for each of the
categories returned by `invokeai --help`. The file looks like this:
2023-05-04 05:20:30 +00:00
[file: invokeai.yaml]
InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
autoimport_dir: null
Models:
model: stable-diffusion-1.5
embeddings: true
Memory/Performance:
xformers_enabled: false
sequential_guidance: false
precision: float16
max_loaded_models: 4
always_use_cpu: false
free_gpu_mem: false
Features:
nsfw_checker: true
restore: true
esrgan: true
patchmatch: true
internet_available: true
log_tokenization: false
Web Server:
host: 127.0.0.1
port: 8081
allow_origins: []
allow_credentials: true
allow_methods:
- '*'
allow_headers:
- '*'
2023-05-04 05:20:30 +00:00
The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can replace supersede this by providing any
OmegaConf dictionary object initialization time:
2023-05-04 05:20:30 +00:00
omegaconf = OmegaConf.load('/tmp/init.yaml')
conf = InvokeAIAppConfig()
conf.parse_args(conf=omegaconf)
2023-05-04 05:20:30 +00:00
InvokeAIAppConfig.parse_args() will parse the contents of `sys.argv`
at initialization time. You may pass a list of strings in the optional
2023-05-04 05:20:30 +00:00
`argv` argument to use instead of the system argv:
conf.parse_args(argv=['--xformers_enabled'])
2023-05-04 05:20:30 +00:00
It is also possible to set a value at initialization time. However, if
you call parse_args() it may be overwritten.
2023-05-04 05:20:30 +00:00
conf = InvokeAIAppConfig(xformers_enabled=True)
conf.parse_args(argv=['--no-xformers'])
conf.xformers_enabled
# False
To avoid this, use `get_config()` to retrieve the application-wide
configuration object. This will retain any properties set at object
creation time:
conf = InvokeAIAppConfig.get_config(xformers_enabled=True)
conf.parse_args(argv=['--no-xformers'])
conf.xformers_enabled
# True
2023-05-04 05:20:30 +00:00
Any setting can be overwritten by setting an environment variable of
form: "INVOKEAI_<setting>", as in:
2023-05-04 05:20:30 +00:00
export INVOKEAI_port=8080
2023-05-04 05:20:30 +00:00
Order of precedence (from highest):
1) initialization options
2) command line options
3) environment variable options
4) config file options
5) pydantic defaults
Typical usage at the top level file:
2023-05-04 05:20:30 +00:00
from invokeai.app.services.config import InvokeAIAppConfig
# get global configuration and print its nsfw_checker value
conf = InvokeAIAppConfig.get_config()
conf.parse_args()
2023-05-04 05:20:30 +00:00
print(conf.nsfw_checker)
Typical usage in a backend module:
from invokeai.app.services.config import InvokeAIAppConfig
# get global configuration and print its nsfw_checker value
conf = InvokeAIAppConfig.get_config()
2023-05-04 05:20:30 +00:00
print(conf.nsfw_checker)
Computed properties:
The InvokeAIAppConfig object has a series of properties that
resolve paths relative to the runtime root directory. They each return
a Path object:
root_path - path to InvokeAI root
output_path - path to default outputs directory
model_conf_path - path to models.yaml
conf - alias for the above
embedding_path - path to the embeddings directory
lora_path - path to the LoRA directory
2023-05-04 05:20:30 +00:00
In most cases, you will want to create a single InvokeAIAppConfig
object for the entire application. The InvokeAIAppConfig.get_config() function
2023-05-04 05:20:30 +00:00
does this:
config = InvokeAIAppConfig.get_config()
config.parse_args() # read values from the command line/config file
2023-05-04 05:20:30 +00:00
print(config.root)
# Subclassing
If you wish to create a similar class, please subclass the
`InvokeAISettings` class and define a Literal field named "type",
which is set to the desired top-level name. For example, to create a
"InvokeBatch" configuration, define like this:
class InvokeBatch(InvokeAISettings):
type: Literal["InvokeBatch"] = "InvokeBatch"
node_count : int = Field(default=1, description="Number of nodes to run on", category='Resources')
cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", category='Resources')
This will now read and write from the "InvokeBatch" section of the
config file, look for environment variables named INVOKEBATCH_*, and
accept the command-line arguments `--node_count` and `--cpu_count`. The
two configs are kept in separate sections of the config file:
# invokeai.yaml
InvokeBatch:
Resources:
node_count: 1
cpu_count: 8
InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
...
2023-05-04 05:20:30 +00:00
'''
from __future__ import annotations
2023-05-04 05:20:30 +00:00
import argparse
2023-05-17 19:22:58 +00:00
import pydoc
2023-05-04 05:20:30 +00:00
import os
import sys
from argparse import ArgumentParser
from omegaconf import OmegaConf, DictConfig
from pathlib import Path
from pydantic import BaseSettings, Field, parse_obj_as
from typing import ClassVar, Dict, List, Set, Literal, Union, get_origin, get_type_hints, get_args
2023-05-04 05:20:30 +00:00
INIT_FILE = Path('invokeai.yaml')
MODEL_CORE = Path('models/core')
DB_FILE = Path('invokeai.db')
2023-05-04 05:20:30 +00:00
LEGACY_INIT_FILE = Path('invokeai.init')
class InvokeAISettings(BaseSettings):
'''
Runtime configuration settings in which default values are
read from an omegaconf .yaml file.
'''
initconf : ClassVar[DictConfig] = None
argparse_groups : ClassVar[Dict] = {}
def parse_args(self, argv: list=sys.argv[1:]):
parser = self.get_parser()
2023-05-25 03:57:15 +00:00
opt = parser.parse_args(argv)
2023-05-04 05:20:30 +00:00
for name in self.__fields__:
if name not in self._excluded():
setattr(self, name, getattr(opt,name))
def to_yaml(self)->str:
"""
Return a YAML string representing our settings. This can be used
as the contents of `invokeai.yaml` to restore settings later.
"""
cls = self.__class__
type = get_args(get_type_hints(cls)['type'])[0]
field_dict = dict({type:dict()})
for name,field in self.__fields__.items():
if name in cls._excluded():
continue
category = field.field_info.extra.get("category") or "Uncategorized"
value = getattr(self,name)
if category not in field_dict[type]:
field_dict[type][category] = dict()
# keep paths as strings to make it easier to read
field_dict[type][category][name] = str(value) if isinstance(value,Path) else value
conf = OmegaConf.create(field_dict)
return OmegaConf.to_yaml(conf)
2023-05-04 05:20:30 +00:00
@classmethod
def add_parser_arguments(cls, parser):
if 'type' in get_type_hints(cls):
settings_stanza = get_args(get_type_hints(cls)['type'])[0]
2023-05-04 05:20:30 +00:00
else:
settings_stanza = "Uncategorized"
env_prefix = cls.Config.env_prefix if hasattr(cls.Config,'env_prefix') else settings_stanza.upper()
initconf = cls.initconf.get(settings_stanza) \
if cls.initconf and settings_stanza in cls.initconf \
else OmegaConf.create()
2023-05-04 05:20:30 +00:00
# create an upcase version of the environment in
# order to achieve case-insensitive environment
# variables (the way Windows does)
upcase_environ = dict()
for key,value in os.environ.items():
upcase_environ[key.upper()] = value
2023-07-04 21:05:35 +00:00
2023-05-04 05:20:30 +00:00
fields = cls.__fields__
cls.argparse_groups = {}
2023-07-04 21:05:35 +00:00
2023-05-04 05:20:30 +00:00
for name, field in fields.items():
if name not in cls._excluded():
current_default = field.default
category = field.field_info.extra.get("category","Uncategorized")
env_name = env_prefix + '_' + name
if category in initconf and name in initconf.get(category):
field.default = initconf.get(category).get(name)
if env_name.upper() in upcase_environ:
field.default = upcase_environ[env_name.upper()]
2023-05-04 05:20:30 +00:00
cls.add_field_argument(parser, name, field)
field.default = current_default
2023-05-04 05:20:30 +00:00
@classmethod
def cmd_name(self, command_field: str='type')->str:
hints = get_type_hints(self)
if command_field in hints:
return get_args(hints[command_field])[0]
else:
return 'Uncategorized'
2023-05-04 05:20:30 +00:00
@classmethod
def get_parser(cls)->ArgumentParser:
2023-05-17 19:22:58 +00:00
parser = PagingArgumentParser(
2023-05-04 05:20:30 +00:00
prog=cls.cmd_name(),
description=cls.__doc__,
)
cls.add_parser_arguments(parser)
return parser
@classmethod
def add_subparser(cls, parser: argparse.ArgumentParser):
parser.add_parser(cls.cmd_name(), help=cls.__doc__)
@classmethod
def _excluded(self)->Set[str]:
return {'type','initconf','version'}
2023-05-04 05:20:30 +00:00
class Config:
env_file_encoding = 'utf-8'
arbitrary_types_allowed = True
case_sensitive = True
@classmethod
def add_field_argument(cls, command_parser, name: str, field, default_override = None):
field_type = get_type_hints(cls).get(name)
2023-05-04 05:20:30 +00:00
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory()
if category := field.field_info.extra.get("category"):
if category not in cls.argparse_groups:
cls.argparse_groups[category] = command_parser.add_argument_group(category)
argparse_group = cls.argparse_groups[category]
else:
argparse_group = command_parser
if get_origin(field_type) == Literal:
2023-05-04 05:20:30 +00:00
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
elif get_origin(field_type) == list:
argparse_group.add_argument(
f"--{name}",
dest=name,
nargs='*',
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_==bool else 'store',
help=field.field_info.description,
)
2023-05-04 05:20:30 +00:00
else:
argparse_group.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
action=argparse.BooleanOptionalAction if field.type_==bool else 'store',
help=field.field_info.description,
)
def _find_root()->Path:
venv = Path(os.environ.get("VIRTUAL_ENV") or ".")
2023-05-04 05:20:30 +00:00
if os.environ.get("INVOKEAI_ROOT"):
root = Path(os.environ.get("INVOKEAI_ROOT")).resolve()
elif any([(venv.parent/x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE, MODEL_CORE]]):
root = (venv.parent).resolve()
2023-05-04 05:20:30 +00:00
else:
root = Path("~/invokeai").expanduser().resolve()
return root
class InvokeAIAppConfig(InvokeAISettings):
'''
2023-05-17 19:22:58 +00:00
Generate images using Stable Diffusion. Use "invokeai" to launch
the command-line client (recommended for experts only), or
"invokeai-web" to launch the web server. Global options
can be changed by editing the file "INVOKEAI_ROOT/invokeai.yaml" or by
setting environment variables INVOKEAI_<setting>.
'''
singleton_config: ClassVar[InvokeAIAppConfig] = None
singleton_init: ClassVar[Dict] = None
2023-07-04 21:05:35 +00:00
2023-05-04 05:20:30 +00:00
#fmt: off
type: Literal["InvokeAI"] = "InvokeAI"
2023-05-17 19:22:58 +00:00
host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server')
port : int = Field(default=9090, description="Port to bind to", category='Web Server')
allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server')
allow_credentials : bool = Field(default=True, description="Allow CORS credentials", category='Web Server')
allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server')
allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server')
esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features')
internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features')
log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features')
nsfw_checker : bool = Field(default=True, description="Enable/disable the NSFW checker", category='Features')
patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features')
restore : bool = Field(default=True, description="Enable/disable face restoration code", category='Features')
always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance')
free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance')
2023-07-04 21:05:35 +00:00
max_loaded_models : int = Field(default=3, gt=0, description="(DEPRECATED: use max_cache_size) Maximum number of models to keep in memory for rapid switching", category='Memory/Performance')
max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance')
2023-05-17 19:22:58 +00:00
precision : Literal[tuple(['auto','float16','float32','autocast'])] = Field(default='float16',description='Floating point precision', category='Memory/Performance')
sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance')
xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance')
tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance')
2023-05-04 05:20:30 +00:00
root : Path = Field(default=_find_root(), description='InvokeAI runtime root directory', category='Paths')
autoimport_dir : Path = Field(default='autoimport/main', description='Path to a directory of models files to be imported on startup.', category='Paths')
lora_dir : Path = Field(default='autoimport/lora', description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths')
embedding_dir : Path = Field(default='autoimport/embedding', description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths')
controlnet_dir : Path = Field(default='autoimport/controlnet', description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths')
2023-05-04 05:20:30 +00:00
conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths')
models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths')
2023-05-17 19:22:58 +00:00
legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths')
db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths')
2023-05-17 19:22:58 +00:00
outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths')
from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths')
use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths')
2023-07-04 21:05:35 +00:00
2023-05-17 19:22:58 +00:00
model : str = Field(default='stable-diffusion-1.5', description='Initial model name', category='Models')
2023-07-04 21:05:35 +00:00
2023-05-25 03:57:15 +00:00
log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=<path>", "syslog=path|address:host:port", "http=<url>"', category="Logging")
# note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues
log_format : Literal[tuple(['plain','color','syslog','legacy'])] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging")
log_level : Literal[tuple(["debug","info","warning","error","critical"])] = Field(default="debug", description="Emit logging messages at this level or higher", category="Logging")
version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other")
2023-05-04 05:20:30 +00:00
#fmt: on
def parse_args(self, argv: List[str]=None, conf: DictConfig = None, clobber=False):
2023-05-04 05:20:30 +00:00
'''
2023-07-04 21:05:35 +00:00
Update settings with contents of init file, environment, and
command-line settings.
2023-05-04 05:20:30 +00:00
:param conf: alternate Omegaconf dictionary object
:param argv: aternate sys.argv list
:param clobber: ovewrite any initialization parameters passed during initialization
2023-05-04 05:20:30 +00:00
'''
# Set the runtime root directory. We parse command-line switches here
# in order to pick up the --root_dir option.
super().parse_args(argv)
if conf is None:
2023-05-04 05:20:30 +00:00
try:
conf = OmegaConf.load(self.root_dir / INIT_FILE)
except:
pass
InvokeAISettings.initconf = conf
2023-07-04 21:05:35 +00:00
2023-05-04 05:20:30 +00:00
# parse args again in order to pick up settings in configuration file
super().parse_args(argv)
2023-05-04 05:20:30 +00:00
if self.singleton_init and not clobber:
hints = get_type_hints(self.__class__)
for k in self.singleton_init:
setattr(self,k,parse_obj_as(hints[k],self.singleton_init[k]))
2023-05-04 05:20:30 +00:00
@classmethod
def get_config(cls,**kwargs)->InvokeAIAppConfig:
'''
This returns a singleton InvokeAIAppConfig configuration object.
'''
if cls.singleton_config is None \
or type(cls.singleton_config)!=cls \
or (kwargs and cls.singleton_init != kwargs):
cls.singleton_config = cls(**kwargs)
cls.singleton_init = kwargs
return cls.singleton_config
2023-07-04 21:05:35 +00:00
2023-05-04 05:20:30 +00:00
@property
def root_path(self)->Path:
'''
Path to the runtime root directory
'''
if self.root:
return Path(self.root).expanduser()
else:
return self.find_root()
@property
def root_dir(self)->Path:
'''
Alias for above.
'''
return self.root_path
def _resolve(self,partial_path:Path)->Path:
return (self.root_path / partial_path).resolve()
2023-05-30 17:49:43 +00:00
@property
def init_file_path(self)->Path:
'''
Path to invokeai.yaml
'''
return self._resolve(INIT_FILE)
2023-05-04 05:20:30 +00:00
@property
def output_path(self)->Path:
'''
Path to defaults outputs directory.
'''
return self._resolve(self.outdir)
@property
def db_path(self)->Path:
'''
Path to the invokeai.db file.
'''
return self._resolve(self.db_dir) / DB_FILE
2023-05-04 05:20:30 +00:00
@property
def model_conf_path(self)->Path:
'''
Path to models configuration file.
'''
return self._resolve(self.conf_path)
@property
def legacy_conf_path(self)->Path:
'''
Path to directory of legacy configuration files (e.g. v1-inference.yaml)
'''
return self._resolve(self.legacy_conf_dir)
@property
def models_path(self)->Path:
2023-05-04 05:20:30 +00:00
'''
Path to the models directory
'''
return self._resolve(self.models_dir)
2023-05-04 05:20:30 +00:00
@property
def autoconvert_path(self)->Path:
'''
Path to the directory containing models to be imported automatically at startup.
'''
return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None
# the following methods support legacy calls leftover from the Globals era
@property
def full_precision(self)->bool:
"""Return true if precision set to float32"""
return self.precision=='float32'
@property
def disable_xformers(self)->bool:
"""Return true if xformers_enabled is false"""
return not self.xformers_enabled
2023-05-16 05:50:01 +00:00
@property
def try_patchmatch(self)->bool:
"""Return true if patchmatch true"""
return self.patchmatch
2023-05-04 05:20:30 +00:00
@staticmethod
def find_root()->Path:
'''
Choose the runtime root directory when not specified on command line or
init file.
'''
return _find_root()
2023-05-17 19:22:58 +00:00
class PagingArgumentParser(argparse.ArgumentParser):
'''
A custom ArgumentParser that uses pydoc to page its output.
It also supports reading defaults from an init file.
'''
def print_help(self, file=None):
text = self.format_help()
pydoc.pager(text)
def get_invokeai_config(**kwargs)->InvokeAIAppConfig:
2023-05-04 05:20:30 +00:00
'''
Legacy function which returns InvokeAIAppConfig.get_config()
2023-05-04 05:20:30 +00:00
'''
return InvokeAIAppConfig.get_config(**kwargs)