InvokeAI/invokeai/app/invocations/metadata.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

226 lines
9.2 KiB
Python
Raw Normal View History

from typing import Any, Literal, Optional, Union
from pydantic import BaseModel, ConfigDict, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InputField,
InvocationContext,
MetadataField,
OutputField,
UIType,
invocation,
invocation_output,
)
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.ip_adapter import IPAdapterModelField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.shared.fields import FieldDescriptions
from ...version import __version__
2023-07-27 14:54:01 +00:00
class MetadataItemField(BaseModel):
label: str = Field(description=FieldDescriptions.metadata_item_label)
value: Any = Field(description=FieldDescriptions.metadata_item_value)
class LoRAMetadataField(BaseModel):
"""LoRA Metadata Field"""
lora: LoRAModelField = Field(description=FieldDescriptions.lora_model)
weight: float = Field(description=FieldDescriptions.lora_weight)
class IPAdapterMetadataField(BaseModel):
"""IP Adapter Field, minus the CLIP Vision Encoder model"""
image: ImageField = Field(description="The IP-Adapter image prompt.")
ip_adapter_model: IPAdapterModelField = Field(
description="The IP-Adapter model.",
)
weight: Union[float, list[float]] = Field(
description="The weight given to the IP-Adapter",
)
begin_step_percent: float = Field(description="When the IP-Adapter is first applied (% of total steps)")
end_step_percent: float = Field(description="When the IP-Adapter is last applied (% of total steps)")
@invocation_output("metadata_item_output")
class MetadataItemOutput(BaseInvocationOutput):
"""Metadata Item Output"""
item: MetadataItemField = OutputField(description="Metadata Item")
@invocation("metadata_item", title="Metadata Item", tags=["metadata"], category="metadata", version="1.0.0")
class MetadataItemInvocation(BaseInvocation):
"""Used to create an arbitrary metadata item. Provide "label" and make a connection to "value" to store that data as the value."""
label: str = InputField(description=FieldDescriptions.metadata_item_label)
value: Any = InputField(description=FieldDescriptions.metadata_item_value, ui_type=UIType.Any)
def invoke(self, context: InvocationContext) -> MetadataItemOutput:
return MetadataItemOutput(item=MetadataItemField(label=self.label, value=self.value))
@invocation_output("metadata_output")
class MetadataOutput(BaseInvocationOutput):
metadata: MetadataField = OutputField(description="Metadata Dict")
@invocation("metadata", title="Metadata", tags=["metadata"], category="metadata", version="1.0.0")
class MetadataInvocation(BaseInvocation):
"""Takes a MetadataItem or collection of MetadataItems and outputs a MetadataDict."""
items: Union[list[MetadataItemField], MetadataItemField] = InputField(
description=FieldDescriptions.metadata_item_polymorphic
)
def invoke(self, context: InvocationContext) -> MetadataOutput:
if isinstance(self.items, MetadataItemField):
# single metadata item
data = {self.items.label: self.items.value}
else:
# collection of metadata items
data = {item.label: item.value for item in self.items}
# add app version
data.update({"app_version": __version__})
return MetadataOutput(metadata=MetadataField.model_validate(data))
@invocation("merge_metadata", title="Metadata Merge", tags=["metadata"], category="metadata", version="1.0.0")
class MergeMetadataInvocation(BaseInvocation):
"""Merged a collection of MetadataDict into a single MetadataDict."""
collection: list[MetadataField] = InputField(description=FieldDescriptions.metadata_collection)
def invoke(self, context: InvocationContext) -> MetadataOutput:
data = {}
for item in self.collection:
data.update(item.model_dump())
return MetadataOutput(metadata=MetadataField.model_validate(data))
GENERATION_MODES = Literal[
"txt2img", "img2img", "inpaint", "outpaint", "sdxl_txt2img", "sdxl_img2img", "sdxl_inpaint", "sdxl_outpaint"
]
@invocation("core_metadata", title="Core Metadata", tags=["metadata"], category="metadata", version="1.0.0")
class CoreMetadataInvocation(BaseInvocation):
"""Collects core generation metadata into a MetadataField"""
generation_mode: Optional[GENERATION_MODES] = InputField(
default=None,
description="The generation mode that output this image",
)
positive_prompt: Optional[str] = InputField(default=None, description="The positive prompt parameter")
negative_prompt: Optional[str] = InputField(default=None, description="The negative prompt parameter")
width: Optional[int] = InputField(default=None, description="The width parameter")
height: Optional[int] = InputField(default=None, description="The height parameter")
seed: Optional[int] = InputField(default=None, description="The seed used for noise generation")
rand_device: Optional[str] = InputField(default=None, description="The device used for random number generation")
cfg_scale: Optional[float] = InputField(default=None, description="The classifier-free guidance scale parameter")
steps: Optional[int] = InputField(default=None, description="The number of steps used for inference")
scheduler: Optional[str] = InputField(default=None, description="The scheduler used for inference")
seamless_x: Optional[bool] = InputField(default=None, description="Whether seamless tiling was used on the X axis")
seamless_y: Optional[bool] = InputField(default=None, description="Whether seamless tiling was used on the Y axis")
clip_skip: Optional[int] = InputField(
default=None,
description="The number of skipped CLIP layers",
)
model: Optional[MainModelField] = InputField(default=None, description="The main model used for inference")
controlnets: Optional[list[ControlField]] = InputField(
default=None, description="The ControlNets used for inference"
)
ipAdapters: Optional[list[IPAdapterMetadataField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
t2iAdapters: Optional[list[T2IAdapterField]] = InputField(
default=None, description="The IP Adapters used for inference"
)
loras: Optional[list[LoRAMetadataField]] = InputField(default=None, description="The LoRAs used for inference")
strength: Optional[float] = InputField(
default=None,
description="The strength used for latents-to-latents",
)
init_image: Optional[str] = InputField(
default=None,
description="The name of the initial image",
)
vae: Optional[VAEModelField] = InputField(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
# High resolution fix metadata.
hrf_width: Optional[int] = InputField(
default=None,
description="The high resolution fix height and width multipler.",
)
hrf_height: Optional[int] = InputField(
default=None,
description="The high resolution fix height and width multipler.",
)
hrf_strength: Optional[float] = InputField(
default=None,
description="The high resolution fix img2img strength used in the upscale pass.",
)
# SDXL
positive_style_prompt: Optional[str] = InputField(
default=None,
description="The positive style prompt parameter",
)
negative_style_prompt: Optional[str] = InputField(
default=None,
description="The negative style prompt parameter",
)
# SDXL Refiner
refiner_model: Optional[MainModelField] = InputField(
default=None,
description="The SDXL Refiner model used",
)
refiner_cfg_scale: Optional[float] = InputField(
default=None,
description="The classifier-free guidance scale parameter used for the refiner",
)
refiner_steps: Optional[int] = InputField(
default=None,
description="The number of steps used for the refiner",
)
refiner_scheduler: Optional[str] = InputField(
default=None,
description="The scheduler used for the refiner",
)
refiner_positive_aesthetic_score: Optional[float] = InputField(
default=None,
description="The aesthetic score used for the refiner",
)
refiner_negative_aesthetic_score: Optional[float] = InputField(
default=None,
description="The aesthetic score used for the refiner",
)
refiner_start: Optional[float] = InputField(
default=None,
description="The start value used for refiner denoising",
)
2023-07-18 14:26:45 +00:00
def invoke(self, context: InvocationContext) -> MetadataOutput:
"""Collects and outputs a CoreMetadata object"""
return MetadataOutput(
metadata=MetadataField.model_validate(
self.model_dump(exclude_none=True, exclude={"id", "type", "is_intermediate", "use_cache"})
)
)
model_config = ConfigDict(extra="allow")