InvokeAI/invokeai/app/invocations/tiles.py

292 lines
11 KiB
Python
Raw Normal View History

from typing import Literal
import numpy as np
from PIL import Image
from pydantic import BaseModel
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
Classification,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import ImageField, Input, InputField, OutputField, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.tiles.tiles import (
calc_tiles_even_split,
calc_tiles_min_overlap,
calc_tiles_with_overlap,
merge_tiles_with_linear_blending,
merge_tiles_with_seam_blending,
)
from invokeai.backend.tiles.utils import Tile
class TileWithImage(BaseModel):
tile: Tile
image: ImageField
@invocation_output("calculate_image_tiles_output")
class CalculateImageTilesOutput(BaseInvocationOutput):
tiles: list[Tile] = OutputField(description="The tiles coordinates that cover a particular image shape.")
@invocation(
"calculate_image_tiles",
title="Calculate Image Tiles",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class CalculateImageTilesInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
image_width: int = InputField(ge=1, default=1024, description="The image width, in pixels, to calculate tiles for.")
image_height: int = InputField(
ge=1, default=1024, description="The image height, in pixels, to calculate tiles for."
)
tile_width: int = InputField(ge=1, default=576, description="The tile width, in pixels.")
tile_height: int = InputField(ge=1, default=576, description="The tile height, in pixels.")
overlap: int = InputField(
ge=0,
default=128,
description="The target overlap, in pixels, between adjacent tiles. Adjacent tiles will overlap by at least this amount",
)
def invoke(self, context: InvocationContext) -> CalculateImageTilesOutput:
tiles = calc_tiles_with_overlap(
image_height=self.image_height,
image_width=self.image_width,
tile_height=self.tile_height,
tile_width=self.tile_width,
overlap=self.overlap,
)
return CalculateImageTilesOutput(tiles=tiles)
@invocation(
"calculate_image_tiles_even_split",
title="Calculate Image Tiles Even Split",
tags=["tiles"],
category="tiles",
version="1.1.0",
classification=Classification.Beta,
)
class CalculateImageTilesEvenSplitInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
image_width: int = InputField(ge=1, default=1024, description="The image width, in pixels, to calculate tiles for.")
image_height: int = InputField(
ge=1, default=1024, description="The image height, in pixels, to calculate tiles for."
)
num_tiles_x: int = InputField(
default=2,
ge=1,
description="Number of tiles to divide image into on the x axis",
)
num_tiles_y: int = InputField(
default=2,
ge=1,
description="Number of tiles to divide image into on the y axis",
)
overlap: int = InputField(
default=128,
ge=0,
multiple_of=8,
description="The overlap, in pixels, between adjacent tiles.",
)
def invoke(self, context: InvocationContext) -> CalculateImageTilesOutput:
tiles = calc_tiles_even_split(
image_height=self.image_height,
image_width=self.image_width,
num_tiles_x=self.num_tiles_x,
num_tiles_y=self.num_tiles_y,
overlap=self.overlap,
)
return CalculateImageTilesOutput(tiles=tiles)
@invocation(
"calculate_image_tiles_min_overlap",
title="Calculate Image Tiles Minimum Overlap",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class CalculateImageTilesMinimumOverlapInvocation(BaseInvocation):
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
image_width: int = InputField(ge=1, default=1024, description="The image width, in pixels, to calculate tiles for.")
image_height: int = InputField(
ge=1, default=1024, description="The image height, in pixels, to calculate tiles for."
)
tile_width: int = InputField(ge=1, default=576, description="The tile width, in pixels.")
tile_height: int = InputField(ge=1, default=576, description="The tile height, in pixels.")
min_overlap: int = InputField(default=128, ge=0, description="Minimum overlap between adjacent tiles, in pixels.")
def invoke(self, context: InvocationContext) -> CalculateImageTilesOutput:
tiles = calc_tiles_min_overlap(
image_height=self.image_height,
image_width=self.image_width,
tile_height=self.tile_height,
tile_width=self.tile_width,
min_overlap=self.min_overlap,
)
return CalculateImageTilesOutput(tiles=tiles)
@invocation_output("tile_to_properties_output")
class TileToPropertiesOutput(BaseInvocationOutput):
coords_left: int = OutputField(description="Left coordinate of the tile relative to its parent image.")
coords_right: int = OutputField(description="Right coordinate of the tile relative to its parent image.")
coords_top: int = OutputField(description="Top coordinate of the tile relative to its parent image.")
coords_bottom: int = OutputField(description="Bottom coordinate of the tile relative to its parent image.")
# HACK: The width and height fields are 'meta' fields that can easily be calculated from the other fields on this
# object. Including redundant fields that can cheaply/easily be re-calculated goes against conventional API design
# principles. These fields are included, because 1) they are often useful in tiled workflows, and 2) they are
# difficult to calculate in a workflow (even though it's just a couple of subtraction nodes the graph gets
# surprisingly complicated).
width: int = OutputField(description="The width of the tile. Equal to coords_right - coords_left.")
height: int = OutputField(description="The height of the tile. Equal to coords_bottom - coords_top.")
overlap_top: int = OutputField(description="Overlap between this tile and its top neighbor.")
overlap_bottom: int = OutputField(description="Overlap between this tile and its bottom neighbor.")
overlap_left: int = OutputField(description="Overlap between this tile and its left neighbor.")
overlap_right: int = OutputField(description="Overlap between this tile and its right neighbor.")
@invocation(
"tile_to_properties",
title="Tile to Properties",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class TileToPropertiesInvocation(BaseInvocation):
"""Split a Tile into its individual properties."""
tile: Tile = InputField(description="The tile to split into properties.")
def invoke(self, context: InvocationContext) -> TileToPropertiesOutput:
return TileToPropertiesOutput(
coords_left=self.tile.coords.left,
coords_right=self.tile.coords.right,
coords_top=self.tile.coords.top,
coords_bottom=self.tile.coords.bottom,
width=self.tile.coords.right - self.tile.coords.left,
height=self.tile.coords.bottom - self.tile.coords.top,
overlap_top=self.tile.overlap.top,
overlap_bottom=self.tile.overlap.bottom,
overlap_left=self.tile.overlap.left,
overlap_right=self.tile.overlap.right,
)
@invocation_output("pair_tile_image_output")
class PairTileImageOutput(BaseInvocationOutput):
tile_with_image: TileWithImage = OutputField(description="A tile description with its corresponding image.")
@invocation(
"pair_tile_image",
title="Pair Tile with Image",
tags=["tiles"],
category="tiles",
version="1.0.0",
classification=Classification.Beta,
)
class PairTileImageInvocation(BaseInvocation):
"""Pair an image with its tile properties."""
# TODO(ryand): The only reason that PairTileImage is needed is because the iterate/collect nodes don't preserve
# order. Can this be fixed?
image: ImageField = InputField(description="The tile image.")
tile: Tile = InputField(description="The tile properties.")
def invoke(self, context: InvocationContext) -> PairTileImageOutput:
return PairTileImageOutput(
tile_with_image=TileWithImage(
tile=self.tile,
image=self.image,
)
)
BLEND_MODES = Literal["Linear", "Seam"]
@invocation(
"merge_tiles_to_image",
title="Merge Tiles to Image",
tags=["tiles"],
category="tiles",
version="1.1.0",
classification=Classification.Beta,
)
2023-12-09 22:05:23 +00:00
class MergeTilesToImageInvocation(BaseInvocation, WithMetadata):
"""Merge multiple tile images into a single image."""
# Inputs
tiles_with_images: list[TileWithImage] = InputField(description="A list of tile images with tile properties.")
blend_mode: BLEND_MODES = InputField(
default="Seam",
description="blending type Linear or Seam",
input=Input.Direct,
)
blend_amount: int = InputField(
default=32,
ge=0,
description="The amount to blend adjacent tiles in pixels. Must be <= the amount of overlap between adjacent tiles.",
)
def invoke(self, context: InvocationContext) -> ImageOutput:
images = [twi.image for twi in self.tiles_with_images]
tiles = [twi.tile for twi in self.tiles_with_images]
# Infer the output image dimensions from the max/min tile limits.
height = 0
width = 0
for tile in tiles:
height = max(height, tile.coords.bottom)
width = max(width, tile.coords.right)
# Get all tile images for processing.
# TODO(ryand): It pains me that we spend time PNG decoding each tile from disk when they almost certainly
# existed in memory at an earlier point in the graph.
tile_np_images: list[np.ndarray] = []
for image in images:
pil_image = context.images.get_pil(image.image_name)
pil_image = pil_image.convert("RGB")
tile_np_images.append(np.array(pil_image))
# Prepare the output image buffer.
# Check the first tile to determine how many image channels are expected in the output.
channels = tile_np_images[0].shape[-1]
dtype = tile_np_images[0].dtype
np_image = np.zeros(shape=(height, width, channels), dtype=dtype)
if self.blend_mode == "Linear":
merge_tiles_with_linear_blending(
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
)
elif self.blend_mode == "Seam":
merge_tiles_with_seam_blending(
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
)
else:
raise ValueError(f"Unsupported blend mode: '{self.blend_mode}'.")
# Convert into a PIL image and save
pil_image = Image.fromarray(np_image)
image_dto = context.images.save(image=pil_image)
return ImageOutput.build(image_dto)