2023-02-16 05:34:15 +00:00
|
|
|
"""
|
2023-02-15 06:07:39 +00:00
|
|
|
Utility (backend) functions used by model_install.py
|
2023-02-16 05:34:15 +00:00
|
|
|
"""
|
2023-02-15 06:07:39 +00:00
|
|
|
import os
|
|
|
|
import re
|
|
|
|
import shutil
|
|
|
|
import sys
|
|
|
|
import warnings
|
|
|
|
from pathlib import Path
|
|
|
|
from tempfile import TemporaryFile
|
2023-03-03 06:02:00 +00:00
|
|
|
from typing import List
|
2023-02-15 06:07:39 +00:00
|
|
|
|
|
|
|
import requests
|
|
|
|
from diffusers import AutoencoderKL
|
|
|
|
from huggingface_hub import hf_hub_url
|
|
|
|
from omegaconf import OmegaConf
|
|
|
|
from omegaconf.dictconfig import DictConfig
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
import invokeai.configs as configs
|
2023-03-03 06:02:00 +00:00
|
|
|
|
2023-05-16 05:50:01 +00:00
|
|
|
from invokeai.app.services.config import get_invokeai_config
|
2023-03-03 05:02:15 +00:00
|
|
|
from ..model_management import ModelManager
|
2023-03-03 06:02:00 +00:00
|
|
|
from ..stable_diffusion import StableDiffusionGeneratorPipeline
|
2023-02-15 06:07:39 +00:00
|
|
|
|
2023-05-04 04:43:51 +00:00
|
|
|
|
2023-02-15 06:07:39 +00:00
|
|
|
warnings.filterwarnings("ignore")
|
2023-02-16 05:34:15 +00:00
|
|
|
|
2023-02-15 06:07:39 +00:00
|
|
|
# --------------------------globals-----------------------
|
2023-05-04 04:43:51 +00:00
|
|
|
config = get_invokeai_config()
|
2023-02-15 06:07:39 +00:00
|
|
|
Model_dir = "models"
|
|
|
|
Weights_dir = "ldm/stable-diffusion-v1/"
|
|
|
|
|
|
|
|
# the initial "configs" dir is now bundled in the `invokeai.configs` package
|
|
|
|
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
|
|
|
|
|
2023-02-16 05:34:15 +00:00
|
|
|
# initial models omegaconf
|
|
|
|
Datasets = None
|
2023-02-15 06:07:39 +00:00
|
|
|
|
2023-02-16 05:34:15 +00:00
|
|
|
Config_preamble = """
|
|
|
|
# This file describes the alternative machine learning models
|
2023-02-15 06:07:39 +00:00
|
|
|
# available to InvokeAI script.
|
|
|
|
#
|
|
|
|
# To add a new model, follow the examples below. Each
|
|
|
|
# model requires a model config file, a weights file,
|
|
|
|
# and the width and height of the images it
|
|
|
|
# was trained on.
|
|
|
|
"""
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
|
2023-02-16 05:34:15 +00:00
|
|
|
def default_config_file():
|
2023-05-04 04:43:51 +00:00
|
|
|
return config.model_conf_path
|
2023-02-16 05:34:15 +00:00
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
|
2023-02-16 05:34:15 +00:00
|
|
|
def sd_configs():
|
2023-05-04 04:43:51 +00:00
|
|
|
return config.legacy_conf_path
|
2023-03-03 06:02:00 +00:00
|
|
|
|
2023-02-16 05:34:15 +00:00
|
|
|
def initial_models():
|
|
|
|
global Datasets
|
|
|
|
if Datasets:
|
|
|
|
return Datasets
|
|
|
|
return (Datasets := OmegaConf.load(Dataset_path))
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
|
2023-02-16 05:34:15 +00:00
|
|
|
def install_requested_models(
|
2023-03-03 06:02:00 +00:00
|
|
|
install_initial_models: List[str] = None,
|
|
|
|
remove_models: List[str] = None,
|
|
|
|
scan_directory: Path = None,
|
|
|
|
external_models: List[str] = None,
|
|
|
|
scan_at_startup: bool = False,
|
|
|
|
precision: str = "float16",
|
|
|
|
purge_deleted: bool = False,
|
|
|
|
config_file_path: Path = None,
|
2023-02-16 05:34:15 +00:00
|
|
|
):
|
2023-03-03 06:02:00 +00:00
|
|
|
"""
|
2023-02-23 00:18:07 +00:00
|
|
|
Entry point for installing/deleting starter models, or installing external models.
|
2023-03-03 06:02:00 +00:00
|
|
|
"""
|
|
|
|
config_file_path = config_file_path or default_config_file()
|
2023-02-16 08:22:25 +00:00
|
|
|
if not config_file_path.exists():
|
2023-03-03 06:02:00 +00:00
|
|
|
open(config_file_path, "w")
|
|
|
|
|
|
|
|
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
|
|
|
|
|
2023-02-16 05:34:15 +00:00
|
|
|
if remove_models and len(remove_models) > 0:
|
|
|
|
print("== DELETING UNCHECKED STARTER MODELS ==")
|
|
|
|
for model in remove_models:
|
2023-03-03 06:02:00 +00:00
|
|
|
print(f"{model}...")
|
2023-02-16 05:34:15 +00:00
|
|
|
model_manager.del_model(model, delete_files=purge_deleted)
|
|
|
|
model_manager.commit(config_file_path)
|
2023-03-03 06:02:00 +00:00
|
|
|
|
2023-02-16 05:34:15 +00:00
|
|
|
if install_initial_models and len(install_initial_models) > 0:
|
|
|
|
print("== INSTALLING SELECTED STARTER MODELS ==")
|
|
|
|
successfully_downloaded = download_weight_datasets(
|
|
|
|
models=install_initial_models,
|
|
|
|
access_token=None,
|
|
|
|
precision=precision,
|
2023-02-16 08:22:25 +00:00
|
|
|
) # FIX: for historical reasons, we don't use model manager here
|
2023-02-16 05:34:15 +00:00
|
|
|
update_config_file(successfully_downloaded, config_file_path)
|
|
|
|
if len(successfully_downloaded) < len(install_initial_models):
|
|
|
|
print("** Some of the model downloads were not successful")
|
|
|
|
|
2023-02-16 08:22:25 +00:00
|
|
|
# due to above, we have to reload the model manager because conf file
|
|
|
|
# was changed behind its back
|
2023-03-03 06:02:00 +00:00
|
|
|
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
|
2023-02-16 08:22:25 +00:00
|
|
|
|
|
|
|
external_models = external_models or list()
|
|
|
|
if scan_directory:
|
|
|
|
external_models.append(str(scan_directory))
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
if len(external_models) > 0:
|
2023-02-16 05:34:15 +00:00
|
|
|
print("== INSTALLING EXTERNAL MODELS ==")
|
|
|
|
for path_url_or_repo in external_models:
|
2023-02-16 06:30:59 +00:00
|
|
|
try:
|
|
|
|
model_manager.heuristic_import(
|
|
|
|
path_url_or_repo,
|
2023-03-03 06:02:00 +00:00
|
|
|
commit_to_conf=config_file_path,
|
2023-02-16 06:30:59 +00:00
|
|
|
)
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
sys.exit(-1)
|
|
|
|
except Exception:
|
|
|
|
pass
|
2023-02-16 08:22:25 +00:00
|
|
|
|
|
|
|
if scan_at_startup and scan_directory.is_dir():
|
2023-03-31 08:27:03 +00:00
|
|
|
argument = "--autoconvert"
|
2023-05-04 04:43:51 +00:00
|
|
|
print('** The global initfile is no longer supported; rewrite to support new yaml format **')
|
|
|
|
initfile = Path(config.root, 'invokeai.init')
|
|
|
|
replacement = Path(config.root, f"invokeai.init.new")
|
2023-03-03 06:02:00 +00:00
|
|
|
directory = str(scan_directory).replace("\\", "/")
|
|
|
|
with open(initfile, "r") as input:
|
|
|
|
with open(replacement, "w") as output:
|
2023-02-16 08:22:25 +00:00
|
|
|
while line := input.readline():
|
|
|
|
if not line.startswith(argument):
|
|
|
|
output.writelines([line])
|
2023-03-03 06:02:00 +00:00
|
|
|
output.writelines([f"{argument} {directory}"])
|
|
|
|
os.replace(replacement, initfile)
|
|
|
|
|
2023-02-23 00:18:07 +00:00
|
|
|
|
2023-02-15 06:07:39 +00:00
|
|
|
# -------------------------------------
|
|
|
|
def yes_or_no(prompt: str, default_yes=True):
|
|
|
|
default = "y" if default_yes else "n"
|
|
|
|
response = input(f"{prompt} [{default}] ") or default
|
|
|
|
if default_yes:
|
|
|
|
return response[0] not in ("n", "N")
|
|
|
|
else:
|
|
|
|
return response[0] in ("y", "Y")
|
|
|
|
|
2023-02-16 05:34:15 +00:00
|
|
|
|
2023-02-15 06:07:39 +00:00
|
|
|
# -------------------------------------
|
|
|
|
def get_root(root: str = None) -> str:
|
|
|
|
if root:
|
|
|
|
return root
|
|
|
|
elif os.environ.get("INVOKEAI_ROOT"):
|
|
|
|
return os.environ.get("INVOKEAI_ROOT")
|
|
|
|
else:
|
2023-05-04 04:43:51 +00:00
|
|
|
return config.root
|
2023-02-15 06:07:39 +00:00
|
|
|
|
2023-02-16 05:34:15 +00:00
|
|
|
|
2023-02-15 06:07:39 +00:00
|
|
|
# ---------------------------------------------
|
|
|
|
def recommended_datasets() -> dict:
|
|
|
|
datasets = dict()
|
2023-02-16 05:34:15 +00:00
|
|
|
for ds in initial_models().keys():
|
|
|
|
if initial_models()[ds].get("recommended", False):
|
2023-02-15 06:07:39 +00:00
|
|
|
datasets[ds] = True
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
|
|
|
# ---------------------------------------------
|
|
|
|
def default_dataset() -> dict:
|
|
|
|
datasets = dict()
|
2023-02-16 05:34:15 +00:00
|
|
|
for ds in initial_models().keys():
|
|
|
|
if initial_models()[ds].get("default", False):
|
2023-02-15 06:07:39 +00:00
|
|
|
datasets[ds] = True
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
|
|
|
# ---------------------------------------------
|
|
|
|
def all_datasets() -> dict:
|
|
|
|
datasets = dict()
|
2023-02-16 05:34:15 +00:00
|
|
|
for ds in initial_models().keys():
|
2023-02-15 06:07:39 +00:00
|
|
|
datasets[ds] = True
|
|
|
|
return datasets
|
|
|
|
|
|
|
|
|
|
|
|
# ---------------------------------------------
|
|
|
|
# look for legacy model.ckpt in models directory and offer to
|
|
|
|
# normalize its name
|
|
|
|
def migrate_models_ckpt():
|
2023-05-04 04:43:51 +00:00
|
|
|
model_path = os.path.join(config.root, Model_dir, Weights_dir)
|
2023-02-15 06:07:39 +00:00
|
|
|
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
|
|
|
|
return
|
2023-02-16 05:34:15 +00:00
|
|
|
new_name = initial_models()["stable-diffusion-1.4"]["file"]
|
2023-03-03 06:02:00 +00:00
|
|
|
print(
|
|
|
|
'The Stable Diffusion v4.1 "model.ckpt" is already installed. The name will be changed to {new_name} to avoid confusion.'
|
|
|
|
)
|
2023-02-16 05:34:15 +00:00
|
|
|
print(f"model.ckpt => {new_name}")
|
|
|
|
os.replace(
|
|
|
|
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
|
|
|
|
)
|
2023-02-15 06:07:39 +00:00
|
|
|
|
|
|
|
|
|
|
|
# ---------------------------------------------
|
|
|
|
def download_weight_datasets(
|
2023-02-16 05:34:15 +00:00
|
|
|
models: List[str], access_token: str, precision: str = "float32"
|
2023-02-15 06:07:39 +00:00
|
|
|
):
|
|
|
|
migrate_models_ckpt()
|
|
|
|
successful = dict()
|
2023-02-16 05:34:15 +00:00
|
|
|
for mod in models:
|
2023-02-15 06:07:39 +00:00
|
|
|
print(f"Downloading {mod}:")
|
|
|
|
successful[mod] = _download_repo_or_file(
|
2023-02-16 05:34:15 +00:00
|
|
|
initial_models()[mod], access_token, precision=precision
|
2023-02-15 06:07:39 +00:00
|
|
|
)
|
|
|
|
return successful
|
|
|
|
|
|
|
|
|
|
|
|
def _download_repo_or_file(
|
|
|
|
mconfig: DictConfig, access_token: str, precision: str = "float32"
|
|
|
|
) -> Path:
|
|
|
|
path = None
|
|
|
|
if mconfig["format"] == "ckpt":
|
|
|
|
path = _download_ckpt_weights(mconfig, access_token)
|
|
|
|
else:
|
|
|
|
path = _download_diffusion_weights(mconfig, access_token, precision=precision)
|
|
|
|
if "vae" in mconfig and "repo_id" in mconfig["vae"]:
|
|
|
|
_download_diffusion_weights(
|
|
|
|
mconfig["vae"], access_token, precision=precision
|
|
|
|
)
|
|
|
|
return path
|
|
|
|
|
|
|
|
|
|
|
|
def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
|
|
|
|
repo_id = mconfig["repo_id"]
|
|
|
|
filename = mconfig["file"]
|
2023-05-04 04:43:51 +00:00
|
|
|
cache_dir = os.path.join(config.root, Model_dir, Weights_dir)
|
2023-02-15 06:07:39 +00:00
|
|
|
return hf_download_with_resume(
|
|
|
|
repo_id=repo_id,
|
|
|
|
model_dir=cache_dir,
|
|
|
|
model_name=filename,
|
|
|
|
access_token=access_token,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# ---------------------------------------------
|
|
|
|
def download_from_hf(
|
2023-05-04 04:43:51 +00:00
|
|
|
model_class: object, model_name: str, **kwargs
|
2023-02-15 06:07:39 +00:00
|
|
|
):
|
2023-05-04 04:43:51 +00:00
|
|
|
path = config.cache_dir
|
2023-02-15 06:07:39 +00:00
|
|
|
model = model_class.from_pretrained(
|
|
|
|
model_name,
|
|
|
|
cache_dir=path,
|
|
|
|
resume_download=True,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
model_name = "--".join(("models", *model_name.split("/")))
|
|
|
|
return path / model_name if model else None
|
|
|
|
|
|
|
|
|
|
|
|
def _download_diffusion_weights(
|
|
|
|
mconfig: DictConfig, access_token: str, precision: str = "float32"
|
|
|
|
):
|
|
|
|
repo_id = mconfig["repo_id"]
|
|
|
|
model_class = (
|
|
|
|
StableDiffusionGeneratorPipeline
|
|
|
|
if mconfig.get("format", None) == "diffusers"
|
|
|
|
else AutoencoderKL
|
|
|
|
)
|
|
|
|
extra_arg_list = [{"revision": "fp16"}, {}] if precision == "float16" else [{}]
|
|
|
|
path = None
|
|
|
|
for extra_args in extra_arg_list:
|
|
|
|
try:
|
|
|
|
path = download_from_hf(
|
|
|
|
model_class,
|
|
|
|
repo_id,
|
|
|
|
safety_checker=None,
|
|
|
|
**extra_args,
|
|
|
|
)
|
|
|
|
except OSError as e:
|
|
|
|
if str(e).startswith("fp16 is not a valid"):
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
print(f"An unexpected error occurred while downloading the model: {e})")
|
|
|
|
if path:
|
|
|
|
break
|
|
|
|
return path
|
|
|
|
|
|
|
|
|
|
|
|
# ---------------------------------------------
|
|
|
|
def hf_download_with_resume(
|
|
|
|
repo_id: str, model_dir: str, model_name: str, access_token: str = None
|
|
|
|
) -> Path:
|
|
|
|
model_dest = Path(os.path.join(model_dir, model_name))
|
|
|
|
os.makedirs(model_dir, exist_ok=True)
|
|
|
|
|
|
|
|
url = hf_hub_url(repo_id, model_name)
|
|
|
|
|
|
|
|
header = {"Authorization": f"Bearer {access_token}"} if access_token else {}
|
|
|
|
open_mode = "wb"
|
|
|
|
exist_size = 0
|
|
|
|
|
|
|
|
if os.path.exists(model_dest):
|
|
|
|
exist_size = os.path.getsize(model_dest)
|
|
|
|
header["Range"] = f"bytes={exist_size}-"
|
|
|
|
open_mode = "ab"
|
|
|
|
|
|
|
|
resp = requests.get(url, headers=header, stream=True)
|
|
|
|
total = int(resp.headers.get("content-length", 0))
|
|
|
|
|
|
|
|
if (
|
|
|
|
resp.status_code == 416
|
|
|
|
): # "range not satisfiable", which means nothing to return
|
|
|
|
print(f"* {model_name}: complete file found. Skipping.")
|
|
|
|
return model_dest
|
|
|
|
elif resp.status_code != 200:
|
|
|
|
print(f"** An error occurred during downloading {model_name}: {resp.reason}")
|
|
|
|
elif exist_size > 0:
|
|
|
|
print(f"* {model_name}: partial file found. Resuming...")
|
|
|
|
else:
|
|
|
|
print(f"* {model_name}: Downloading...")
|
|
|
|
|
|
|
|
try:
|
|
|
|
if total < 2000:
|
|
|
|
print(f"*** ERROR DOWNLOADING {model_name}: {resp.text}")
|
|
|
|
return None
|
|
|
|
|
|
|
|
with open(model_dest, open_mode) as file, tqdm(
|
|
|
|
desc=model_name,
|
|
|
|
initial=exist_size,
|
|
|
|
total=total + exist_size,
|
|
|
|
unit="iB",
|
|
|
|
unit_scale=True,
|
|
|
|
unit_divisor=1000,
|
|
|
|
) as bar:
|
|
|
|
for data in resp.iter_content(chunk_size=1024):
|
|
|
|
size = file.write(data)
|
|
|
|
bar.update(size)
|
|
|
|
except Exception as e:
|
|
|
|
print(f"An error occurred while downloading {model_name}: {str(e)}")
|
|
|
|
return None
|
|
|
|
return model_dest
|
|
|
|
|
|
|
|
|
|
|
|
# ---------------------------------------------
|
2023-02-16 05:34:15 +00:00
|
|
|
def update_config_file(successfully_downloaded: dict, config_file: Path):
|
2023-02-15 06:07:39 +00:00
|
|
|
config_file = (
|
2023-02-16 05:34:15 +00:00
|
|
|
Path(config_file) if config_file is not None else default_config_file()
|
2023-02-15 06:07:39 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
# In some cases (incomplete setup, etc), the default configs directory might be missing.
|
|
|
|
# Create it if it doesn't exist.
|
|
|
|
# this check is ignored if opt.config_file is specified - user is assumed to know what they
|
|
|
|
# are doing if they are passing a custom config file from elsewhere.
|
2023-02-16 05:34:15 +00:00
|
|
|
if config_file is default_config_file() and not config_file.parent.exists():
|
2023-02-15 06:07:39 +00:00
|
|
|
configs_src = Dataset_path.parent
|
2023-02-16 05:34:15 +00:00
|
|
|
configs_dest = default_config_file().parent
|
2023-02-15 06:07:39 +00:00
|
|
|
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
|
|
|
|
|
2023-02-16 05:34:15 +00:00
|
|
|
yaml = new_config_file_contents(successfully_downloaded, config_file)
|
2023-02-15 06:07:39 +00:00
|
|
|
|
|
|
|
try:
|
|
|
|
backup = None
|
|
|
|
if os.path.exists(config_file):
|
|
|
|
print(
|
|
|
|
f"** {config_file.name} exists. Renaming to {config_file.stem}.yaml.orig"
|
|
|
|
)
|
|
|
|
backup = config_file.with_suffix(".yaml.orig")
|
|
|
|
## Ugh. Windows is unable to overwrite an existing backup file, raises a WinError 183
|
|
|
|
if sys.platform == "win32" and backup.is_file():
|
|
|
|
backup.unlink()
|
|
|
|
config_file.rename(backup)
|
|
|
|
|
|
|
|
with TemporaryFile() as tmp:
|
|
|
|
tmp.write(Config_preamble.encode())
|
|
|
|
tmp.write(yaml.encode())
|
|
|
|
|
|
|
|
with open(str(config_file.expanduser().resolve()), "wb") as new_config:
|
|
|
|
tmp.seek(0)
|
|
|
|
new_config.write(tmp.read())
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
print(f"**Error creating config file {config_file}: {str(e)} **")
|
|
|
|
if backup is not None:
|
|
|
|
print("restoring previous config file")
|
|
|
|
## workaround, for WinError 183, see above
|
|
|
|
if sys.platform == "win32" and config_file.is_file():
|
|
|
|
config_file.unlink()
|
|
|
|
backup.rename(config_file)
|
|
|
|
return
|
|
|
|
|
|
|
|
print(f"Successfully created new configuration file {config_file}")
|
|
|
|
|
|
|
|
|
|
|
|
# ---------------------------------------------
|
|
|
|
def new_config_file_contents(
|
2023-03-03 06:02:00 +00:00
|
|
|
successfully_downloaded: dict,
|
|
|
|
config_file: Path,
|
2023-02-15 06:07:39 +00:00
|
|
|
) -> str:
|
|
|
|
if config_file.exists():
|
|
|
|
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
|
|
|
|
else:
|
|
|
|
conf = OmegaConf.create()
|
|
|
|
|
|
|
|
default_selected = None
|
|
|
|
for model in successfully_downloaded:
|
|
|
|
# a bit hacky - what we are doing here is seeing whether a checkpoint
|
|
|
|
# version of the model was previously defined, and whether the current
|
|
|
|
# model is a diffusers (indicated with a path)
|
|
|
|
if conf.get(model) and Path(successfully_downloaded[model]).is_dir():
|
2023-02-16 05:34:15 +00:00
|
|
|
delete_weights(model, conf[model])
|
2023-02-15 06:07:39 +00:00
|
|
|
|
|
|
|
stanza = {}
|
2023-02-16 05:34:15 +00:00
|
|
|
mod = initial_models()[model]
|
2023-02-15 06:07:39 +00:00
|
|
|
stanza["description"] = mod["description"]
|
|
|
|
stanza["repo_id"] = mod["repo_id"]
|
|
|
|
stanza["format"] = mod["format"]
|
|
|
|
# diffusers don't need width and height (probably .ckpt doesn't either)
|
|
|
|
# so we no longer require these in INITIAL_MODELS.yaml
|
|
|
|
if "width" in mod:
|
|
|
|
stanza["width"] = mod["width"]
|
|
|
|
if "height" in mod:
|
|
|
|
stanza["height"] = mod["height"]
|
|
|
|
if "file" in mod:
|
|
|
|
stanza["weights"] = os.path.relpath(
|
2023-05-04 04:43:51 +00:00
|
|
|
successfully_downloaded[model], start=config.root
|
2023-02-15 06:07:39 +00:00
|
|
|
)
|
2023-03-03 06:02:00 +00:00
|
|
|
stanza["config"] = os.path.normpath(
|
|
|
|
os.path.join(sd_configs(), mod["config"])
|
|
|
|
)
|
2023-02-15 06:07:39 +00:00
|
|
|
if "vae" in mod:
|
|
|
|
if "file" in mod["vae"]:
|
|
|
|
stanza["vae"] = os.path.normpath(
|
|
|
|
os.path.join(Model_dir, Weights_dir, mod["vae"]["file"])
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
stanza["vae"] = mod["vae"]
|
|
|
|
if mod.get("default", False):
|
|
|
|
stanza["default"] = True
|
|
|
|
default_selected = True
|
|
|
|
|
|
|
|
conf[model] = stanza
|
|
|
|
|
|
|
|
# if no default model was chosen, then we select the first
|
|
|
|
# one in the list
|
|
|
|
if not default_selected:
|
|
|
|
conf[list(successfully_downloaded.keys())[0]]["default"] = True
|
|
|
|
|
|
|
|
return OmegaConf.to_yaml(conf)
|
|
|
|
|
|
|
|
|
|
|
|
# ---------------------------------------------
|
2023-02-16 05:34:15 +00:00
|
|
|
def delete_weights(model_name: str, conf_stanza: dict):
|
2023-02-15 06:07:39 +00:00
|
|
|
if not (weights := conf_stanza.get("weights")):
|
|
|
|
return
|
|
|
|
if re.match("/VAE/", conf_stanza.get("config")):
|
|
|
|
return
|
2023-02-16 05:34:15 +00:00
|
|
|
|
|
|
|
print(
|
|
|
|
f"\n** The checkpoint version of {model_name} is superseded by the diffusers version. Deleting the original file {weights}?"
|
|
|
|
)
|
2023-03-03 06:02:00 +00:00
|
|
|
|
2023-02-16 05:34:15 +00:00
|
|
|
weights = Path(weights)
|
|
|
|
if not weights.is_absolute():
|
2023-05-04 04:43:51 +00:00
|
|
|
weights = Path(config.root) / weights
|
2023-02-15 06:07:39 +00:00
|
|
|
try:
|
|
|
|
weights.unlink()
|
|
|
|
except OSError as e:
|
|
|
|
print(str(e))
|