2023-08-29 13:29:05 +00:00
|
|
|
# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
|
|
|
|
# and modified as needed
|
|
|
|
|
2023-09-04 23:54:28 +00:00
|
|
|
from typing import Any, Callable, Dict, List, Optional, Union
|
2023-08-29 07:51:55 +00:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import PIL.Image
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from diffusers.models import ControlNetModel
|
2023-09-04 23:54:28 +00:00
|
|
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
2023-08-29 07:51:55 +00:00
|
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
2023-09-04 23:54:28 +00:00
|
|
|
from diffusers.utils import is_compiled_module
|
2023-08-29 07:51:55 +00:00
|
|
|
|
|
|
|
|
|
|
|
def is_torch2_available():
|
|
|
|
return hasattr(F, "scaled_dot_product_attention")
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def generate(
|
|
|
|
self,
|
2023-09-05 02:30:00 +00:00
|
|
|
prompt: Union[str, List[str], None] = None,
|
2023-08-29 07:51:55 +00:00
|
|
|
image: Union[
|
|
|
|
torch.FloatTensor,
|
|
|
|
PIL.Image.Image,
|
|
|
|
np.ndarray,
|
|
|
|
List[torch.FloatTensor],
|
|
|
|
List[PIL.Image.Image],
|
|
|
|
List[np.ndarray],
|
2023-09-05 02:30:00 +00:00
|
|
|
None,
|
2023-08-29 07:51:55 +00:00
|
|
|
] = None,
|
|
|
|
height: Optional[int] = None,
|
|
|
|
width: Optional[int] = None,
|
|
|
|
num_inference_steps: int = 50,
|
|
|
|
guidance_scale: float = 7.5,
|
|
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
|
|
eta: float = 0.0,
|
|
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
output_type: Optional[str] = "pil",
|
|
|
|
return_dict: bool = True,
|
|
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
|
|
callback_steps: int = 1,
|
|
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
|
|
|
guess_mode: bool = False,
|
|
|
|
control_guidance_start: Union[float, List[float]] = 0.0,
|
|
|
|
control_guidance_end: Union[float, List[float]] = 1.0,
|
|
|
|
):
|
|
|
|
r"""
|
|
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
|
|
instead.
|
2023-09-04 23:54:28 +00:00
|
|
|
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`,
|
|
|
|
`List[np.ndarray]`,:
|
2023-08-29 07:51:55 +00:00
|
|
|
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
|
|
|
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
|
|
|
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
|
|
|
|
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
|
|
|
|
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
|
|
|
|
specified in init, images must be passed as a list such that each element of the list can be correctly
|
|
|
|
batched for input to a single controlnet.
|
|
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
|
|
The height in pixels of the generated image.
|
|
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
|
|
The width in pixels of the generated image.
|
|
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
|
|
expense of slower inference.
|
|
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
|
|
usually at the expense of lower image quality.
|
|
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
|
|
less than `1`).
|
|
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
|
The number of images to generate per prompt.
|
|
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
|
to make generation deterministic.
|
|
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
|
|
argument.
|
|
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
|
|
The output format of the generate image. Choose between
|
|
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
|
|
plain tuple.
|
|
|
|
callback (`Callable`, *optional*):
|
|
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
|
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
|
|
called at every step.
|
|
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
|
|
`self.processor` in
|
|
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
|
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
|
|
|
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
|
|
|
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
|
|
|
|
corresponding scale as a list.
|
|
|
|
guess_mode (`bool`, *optional*, defaults to `False`):
|
|
|
|
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
|
|
|
|
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
|
|
|
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
|
|
|
The percentage of total steps at which the controlnet starts applying.
|
|
|
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
|
|
|
The percentage of total steps at which the controlnet stops applying.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
|
|
(nsfw) content, according to the `safety_checker`.
|
|
|
|
"""
|
|
|
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
|
|
|
|
|
|
|
# align format for control guidance
|
|
|
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
|
|
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
|
|
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
|
|
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
|
|
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
|
|
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
2023-09-04 23:37:12 +00:00
|
|
|
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [control_guidance_end]
|
2023-08-29 07:51:55 +00:00
|
|
|
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
|
|
self.check_inputs(
|
|
|
|
prompt,
|
|
|
|
image,
|
|
|
|
callback_steps,
|
|
|
|
negative_prompt,
|
|
|
|
prompt_embeds,
|
|
|
|
negative_prompt_embeds,
|
|
|
|
controlnet_conditioning_scale,
|
|
|
|
control_guidance_start,
|
|
|
|
control_guidance_end,
|
|
|
|
)
|
|
|
|
|
|
|
|
# 2. Define call parameters
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
|
|
batch_size = 1
|
|
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
|
|
batch_size = len(prompt)
|
|
|
|
else:
|
|
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
|
|
|
|
device = self._execution_device
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
|
|
# corresponds to doing no classifier free guidance.
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
|
|
|
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
|
|
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
|
|
|
|
|
|
|
global_pool_conditions = (
|
|
|
|
controlnet.config.global_pool_conditions
|
|
|
|
if isinstance(controlnet, ControlNetModel)
|
|
|
|
else controlnet.nets[0].config.global_pool_conditions
|
|
|
|
)
|
|
|
|
guess_mode = guess_mode or global_pool_conditions
|
|
|
|
|
|
|
|
# 3. Encode input prompt
|
2023-09-04 23:37:12 +00:00
|
|
|
text_encoder_lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
2023-08-29 07:51:55 +00:00
|
|
|
prompt_embeds = self._encode_prompt(
|
|
|
|
prompt,
|
|
|
|
device,
|
|
|
|
num_images_per_prompt,
|
|
|
|
do_classifier_free_guidance,
|
|
|
|
negative_prompt,
|
|
|
|
prompt_embeds=prompt_embeds,
|
|
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
|
|
lora_scale=text_encoder_lora_scale,
|
|
|
|
)
|
|
|
|
|
|
|
|
# 4. Prepare image
|
|
|
|
if isinstance(controlnet, ControlNetModel):
|
|
|
|
image = self.prepare_image(
|
|
|
|
image=image,
|
|
|
|
width=width,
|
|
|
|
height=height,
|
|
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
|
|
device=device,
|
|
|
|
dtype=controlnet.dtype,
|
|
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
|
|
guess_mode=guess_mode,
|
|
|
|
)
|
|
|
|
height, width = image.shape[-2:]
|
|
|
|
elif isinstance(controlnet, MultiControlNetModel):
|
|
|
|
images = []
|
|
|
|
|
|
|
|
for image_ in image:
|
|
|
|
image_ = self.prepare_image(
|
|
|
|
image=image_,
|
|
|
|
width=width,
|
|
|
|
height=height,
|
|
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
|
|
device=device,
|
|
|
|
dtype=controlnet.dtype,
|
|
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
|
|
guess_mode=guess_mode,
|
|
|
|
)
|
|
|
|
|
|
|
|
images.append(image_)
|
|
|
|
|
|
|
|
image = images
|
|
|
|
height, width = image[0].shape[-2:]
|
|
|
|
else:
|
|
|
|
assert False
|
|
|
|
|
|
|
|
# 5. Prepare timesteps
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
|
|
|
|
# 6. Prepare latent variables
|
|
|
|
num_channels_latents = self.unet.config.in_channels
|
|
|
|
latents = self.prepare_latents(
|
|
|
|
batch_size * num_images_per_prompt,
|
|
|
|
num_channels_latents,
|
|
|
|
height,
|
|
|
|
width,
|
|
|
|
prompt_embeds.dtype,
|
|
|
|
device,
|
|
|
|
generator,
|
|
|
|
latents,
|
|
|
|
)
|
|
|
|
|
|
|
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
|
|
|
|
# 7.1 Create tensor stating which controlnets to keep
|
|
|
|
controlnet_keep = []
|
|
|
|
for i in range(len(timesteps)):
|
|
|
|
keeps = [
|
|
|
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
|
|
|
for s, e in zip(control_guidance_start, control_guidance_end)
|
|
|
|
]
|
|
|
|
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
|
|
|
|
|
|
|
# 8. Denoising loop
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
|
|
for i, t in enumerate(timesteps):
|
|
|
|
# expand the latents if we are doing classifier free guidance
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
|
|
|
|
# controlnet(s) inference
|
|
|
|
if guess_mode and do_classifier_free_guidance:
|
|
|
|
# Infer ControlNet only for the conditional batch.
|
|
|
|
control_model_input = latents
|
|
|
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
|
|
|
controlnet_prompt_embeds = prompt_embeds[:, :77, :].chunk(2)[1]
|
|
|
|
else:
|
|
|
|
control_model_input = latent_model_input
|
|
|
|
controlnet_prompt_embeds = prompt_embeds[:, :77, :]
|
|
|
|
|
|
|
|
if isinstance(controlnet_keep[i], list):
|
|
|
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
|
|
|
else:
|
|
|
|
controlnet_cond_scale = controlnet_conditioning_scale
|
|
|
|
if isinstance(controlnet_cond_scale, list):
|
|
|
|
controlnet_cond_scale = controlnet_cond_scale[0]
|
|
|
|
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
|
|
|
|
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
|
|
|
control_model_input,
|
|
|
|
t,
|
|
|
|
encoder_hidden_states=controlnet_prompt_embeds,
|
|
|
|
controlnet_cond=image,
|
|
|
|
conditioning_scale=cond_scale,
|
|
|
|
guess_mode=guess_mode,
|
|
|
|
return_dict=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
if guess_mode and do_classifier_free_guidance:
|
|
|
|
# Infered ControlNet only for the conditional batch.
|
|
|
|
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
|
|
|
# add 0 to the unconditional batch to keep it unchanged.
|
|
|
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
|
|
|
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
|
|
|
|
|
|
|
# predict the noise residual
|
|
|
|
noise_pred = self.unet(
|
|
|
|
latent_model_input,
|
|
|
|
t,
|
|
|
|
encoder_hidden_states=prompt_embeds,
|
|
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
|
|
down_block_additional_residuals=down_block_res_samples,
|
|
|
|
mid_block_additional_residual=mid_block_res_sample,
|
|
|
|
return_dict=False,
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
# perform guidance
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
|
|
|
|
# call the callback, if provided
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
|
|
progress_bar.update()
|
|
|
|
if callback is not None and i % callback_steps == 0:
|
|
|
|
callback(i, t, latents)
|
|
|
|
|
|
|
|
# If we do sequential model offloading, let's offload unet and controlnet
|
|
|
|
# manually for max memory savings
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
|
|
self.unet.to("cpu")
|
|
|
|
self.controlnet.to("cpu")
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
if not output_type == "latent":
|
|
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
|
|
else:
|
|
|
|
image = latents
|
|
|
|
has_nsfw_concept = None
|
|
|
|
|
|
|
|
if has_nsfw_concept is None:
|
|
|
|
do_denormalize = [True] * image.shape[0]
|
|
|
|
else:
|
|
|
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
|
|
|
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
|
|
|
|
|
|
|
# Offload last model to CPU
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
|
|
self.final_offload_hook.offload()
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
return (image, has_nsfw_concept)
|
|
|
|
|
2023-08-29 13:29:05 +00:00
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|