mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
cleanup: merge conflicts
This commit is contained in:
parent
6bb378a101
commit
07381e5a26
@ -29,6 +29,7 @@ CONTROLNET_RESIZE_VALUES = Literal[
|
||||
"just_resize_simple",
|
||||
]
|
||||
|
||||
|
||||
class ControlNetModelField(BaseModel):
|
||||
"""ControlNet model field"""
|
||||
|
||||
@ -68,6 +69,7 @@ class ControlField(BaseModel):
|
||||
raise ValueError("Control weights must be within -1 to 2 range")
|
||||
return v
|
||||
|
||||
|
||||
@invocation_output("control_output")
|
||||
class ControlOutput(BaseInvocationOutput):
|
||||
"""node output for ControlNet info"""
|
||||
@ -78,7 +80,6 @@ class ControlOutput(BaseInvocationOutput):
|
||||
control: ControlField = OutputField(description=FieldDescriptions.control)
|
||||
|
||||
|
||||
|
||||
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet")
|
||||
class ControlNetInvocation(BaseInvocation):
|
||||
"""Collects ControlNet info to pass to other nodes"""
|
||||
@ -119,19 +120,21 @@ class ControlNetInvocation(BaseInvocation):
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
IP_ADAPTER_MODELS = Literal[
|
||||
"models_ip_adapter/models/ip-adapter_sd15.bin",
|
||||
"models_ip_adapter/models/ip-adapter-plus_sd15.bin",
|
||||
"models_ip_adapter/models/ip-adapter-plus-face_sd15.bin",
|
||||
"models_ip_adapter/sdxl_models/ip-adapter_sdxl.bin"
|
||||
"models_ip_adapter/sdxl_models/ip-adapter_sdxl.bin",
|
||||
]
|
||||
|
||||
IP_ADAPTER_IMAGE_ENCODER_MODELS = Literal[
|
||||
"models_ip_adapter/models/image_encoder/",
|
||||
"./models_ip_adapter/models/image_encoder/",
|
||||
"models_ip_adapter/sdxl_models/image_encoder/"
|
||||
"models_ip_adapter/sdxl_models/image_encoder/",
|
||||
]
|
||||
|
||||
|
||||
@invocation("ipadapter", title="IP-Adapter", tags=["ipadapter"], category="ipadapter")
|
||||
class IPAdapterInvocation(BaseInvocation):
|
||||
"""Collects IP-Adapter info to pass to other nodes"""
|
||||
@ -140,14 +143,15 @@ class IPAdapterInvocation(BaseInvocation):
|
||||
|
||||
# Inputs
|
||||
image: ImageField = InputField(description="The control image")
|
||||
#control_model: ControlNetModelField = InputField(
|
||||
# control_model: ControlNetModelField = InputField(
|
||||
# default="lllyasviel/sd-controlnet-canny", description=FieldDescriptions.controlnet_model, input=Input.Direct
|
||||
#)
|
||||
ip_adapter_model: IP_ADAPTER_MODELS = InputField(default="./models_ip_adapter/models/ip-adapter_sd15.bin",
|
||||
description="The IP-Adapter model")
|
||||
# )
|
||||
ip_adapter_model: IP_ADAPTER_MODELS = InputField(
|
||||
default="./models_ip_adapter/models/ip-adapter_sd15.bin", description="The IP-Adapter model"
|
||||
)
|
||||
image_encoder_model: IP_ADAPTER_IMAGE_ENCODER_MODELS = InputField(
|
||||
default="./models_ip_adapter/models/image_encoder/",
|
||||
description="The image encoder model")
|
||||
default="./models_ip_adapter/models/image_encoder/", description="The image encoder model"
|
||||
)
|
||||
control_weight: Union[float, List[float]] = InputField(
|
||||
default=1.0, description="The weight given to the ControlNet", ui_type=UIType.Float
|
||||
)
|
||||
@ -172,9 +176,9 @@ class IPAdapterInvocation(BaseInvocation):
|
||||
image_encoder_model=self.image_encoder_model,
|
||||
control_weight=self.control_weight,
|
||||
# rest are currently ignored
|
||||
#begin_step_percent=self.begin_step_percent,
|
||||
#end_step_percent=self.end_step_percent,
|
||||
#control_mode=self.control_mode,
|
||||
#resize_mode=self.resize_mode,
|
||||
# begin_step_percent=self.begin_step_percent,
|
||||
# end_step_percent=self.end_step_percent,
|
||||
# control_mode=self.control_mode,
|
||||
# resize_mode=self.resize_mode,
|
||||
),
|
||||
)
|
||||
|
@ -1,7 +1,7 @@
|
||||
# Invocations for ControlNet image preprocessors
|
||||
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
|
||||
from builtins import bool, float
|
||||
from typing import Dict, List, Literal, Optional, Union
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
@ -27,17 +27,7 @@ from PIL import Image
|
||||
from invokeai.app.invocations.primitives import ImageField, ImageOutput
|
||||
|
||||
from ..models.image import ImageCategory, ResourceOrigin
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
FieldDescriptions,
|
||||
Input,
|
||||
InputField,
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
UIType,
|
||||
invocation,
|
||||
)
|
||||
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation
|
||||
|
||||
|
||||
@invocation(
|
||||
|
@ -65,7 +65,6 @@ from .control_adapter import ControlField
|
||||
from .model import ModelInfo, UNetField, VaeField
|
||||
|
||||
|
||||
|
||||
DEFAULT_PRECISION = choose_precision(choose_torch_device())
|
||||
|
||||
SAMPLER_NAME_VALUES = Literal[tuple(list(SCHEDULER_MAP.keys()))]
|
||||
@ -387,7 +386,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
resize_mode=control_info.resize_mode,
|
||||
)
|
||||
control_item = ControlNetData(
|
||||
model=control_model, # model object
|
||||
model=control_model, # model object
|
||||
image_tensor=control_image,
|
||||
weight=control_info.control_weight,
|
||||
begin_step_percent=control_info.begin_step_percent,
|
||||
@ -404,7 +403,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
input_image = context.services.images.get_pil_image(control_image_field.image_name)
|
||||
control_item = IPAdapterData(
|
||||
ip_adapter_model=control_info.ip_adapter_model, # name of model (NOT model object)
|
||||
image_encoder_model=control_info.image_encoder_model, # name of model (NOT model obj)
|
||||
image_encoder_model=control_info.image_encoder_model, # name of model (NOT model obj)
|
||||
image=input_image,
|
||||
weight=control_info.control_weight,
|
||||
)
|
||||
@ -564,8 +563,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
conditioning_data=conditioning_data,
|
||||
control_data=controlnet_data, # list[ControlNetData],
|
||||
ip_adapter_data=ip_adapter_data, # list[IPAdapterData],
|
||||
# ip_adapter_image=unwrapped_ip_adapter_image,
|
||||
# ip_adapter_strength=self.ip_adapter_strength,
|
||||
# ip_adapter_image=unwrapped_ip_adapter_image,
|
||||
# ip_adapter_strength=self.ip_adapter_strength,
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
|
@ -12,6 +12,7 @@ class AttnProcessor(nn.Module):
|
||||
r"""
|
||||
Default processor for performing attention-related computations.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size=None,
|
||||
@ -140,7 +141,10 @@ class IPAttnProcessor(nn.Module):
|
||||
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
||||
|
||||
# split hidden states
|
||||
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :self.text_context_len, :], encoder_hidden_states[:, self.text_context_len:, :]
|
||||
encoder_hidden_states, ip_hidden_states = (
|
||||
encoder_hidden_states[:, : self.text_context_len, :],
|
||||
encoder_hidden_states[:, self.text_context_len :, :],
|
||||
)
|
||||
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
@ -186,6 +190,7 @@ class AttnProcessor2_0(torch.nn.Module):
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size=None,
|
||||
@ -338,7 +343,10 @@ class IPAttnProcessor2_0(torch.nn.Module):
|
||||
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
||||
|
||||
# split hidden states
|
||||
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :self.text_context_len, :], encoder_hidden_states[:, self.text_context_len:, :]
|
||||
encoder_hidden_states, ip_hidden_states = (
|
||||
encoder_hidden_states[:, : self.text_context_len, :],
|
||||
encoder_hidden_states[:, self.text_context_len :, :],
|
||||
)
|
||||
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
@ -22,6 +22,7 @@ from .resampler import Resampler
|
||||
|
||||
class ImageProjModel(torch.nn.Module):
|
||||
"""Projection Model"""
|
||||
|
||||
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
||||
super().__init__()
|
||||
|
||||
@ -32,15 +33,15 @@ class ImageProjModel(torch.nn.Module):
|
||||
|
||||
def forward(self, image_embeds):
|
||||
embeds = image_embeds
|
||||
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
|
||||
clip_extra_context_tokens = self.proj(embeds).reshape(
|
||||
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
||||
)
|
||||
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
||||
return clip_extra_context_tokens
|
||||
|
||||
|
||||
class IPAdapter:
|
||||
|
||||
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
|
||||
|
||||
self.device = device
|
||||
self.image_encoder_path = image_encoder_path
|
||||
self.ip_ckpt = ip_ckpt
|
||||
@ -54,7 +55,9 @@ class IPAdapter:
|
||||
self.set_ip_adapter()
|
||||
|
||||
# load image encoder
|
||||
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(self.device, dtype=torch.float16)
|
||||
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
|
||||
self.device, dtype=torch.float16
|
||||
)
|
||||
self.clip_image_processor = CLIPImageProcessor()
|
||||
# image proj model
|
||||
self.image_proj_model = self.init_proj()
|
||||
@ -88,8 +91,9 @@ class IPAdapter:
|
||||
attn_procs[name] = AttnProcessor()
|
||||
else:
|
||||
print("swapping in IPAttnProcessor for", name)
|
||||
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,
|
||||
scale=1.0).to(self.device, dtype=torch.float16)
|
||||
attn_procs[name] = IPAttnProcessor(
|
||||
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0
|
||||
).to(self.device, dtype=torch.float16)
|
||||
unet.set_attn_processor(attn_procs)
|
||||
print("Modified UNet Attn Processors count:", len(unet.attn_processors))
|
||||
print(unet.attn_processors.keys())
|
||||
@ -155,7 +159,12 @@ class IPAdapter:
|
||||
|
||||
with torch.inference_mode():
|
||||
prompt_embeds = self.pipe._encode_prompt(
|
||||
prompt, device=self.device, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
|
||||
prompt,
|
||||
device=self.device,
|
||||
num_images_per_prompt=num_samples,
|
||||
do_classifier_free_guidance=True,
|
||||
negative_prompt=negative_prompt,
|
||||
)
|
||||
negative_prompt_embeds_, prompt_embeds_ = prompt_embeds.chunk(2)
|
||||
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
|
||||
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
|
||||
@ -212,8 +221,17 @@ class IPAdapterXL(IPAdapter):
|
||||
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
||||
|
||||
with torch.inference_mode():
|
||||
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = self.pipe.encode_prompt(
|
||||
prompt, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
|
||||
(
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds,
|
||||
) = self.pipe.encode_prompt(
|
||||
prompt,
|
||||
num_images_per_prompt=num_samples,
|
||||
do_classifier_free_guidance=True,
|
||||
negative_prompt=negative_prompt,
|
||||
)
|
||||
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
||||
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
||||
|
||||
@ -243,7 +261,7 @@ class IPAdapterPlus(IPAdapter):
|
||||
num_queries=self.num_tokens,
|
||||
embedding_dim=self.image_encoder.config.hidden_size,
|
||||
output_dim=self.pipe.unet.config.cross_attention_dim,
|
||||
ff_mult=4
|
||||
ff_mult=4,
|
||||
).to(self.device, dtype=torch.float16)
|
||||
return image_proj_model
|
||||
|
||||
@ -255,6 +273,8 @@ class IPAdapterPlus(IPAdapter):
|
||||
clip_image = clip_image.to(self.device, dtype=torch.float16)
|
||||
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
|
||||
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
||||
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2]
|
||||
uncond_clip_image_embeds = self.image_encoder(
|
||||
torch.zeros_like(clip_image), output_hidden_states=True
|
||||
).hidden_states[-2]
|
||||
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
|
||||
return image_prompt_embeds, uncond_image_prompt_embeds
|
||||
|
@ -20,7 +20,7 @@ def FeedForward(dim, mult=4):
|
||||
|
||||
def reshape_tensor(x, heads):
|
||||
bs, length, width = x.shape
|
||||
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
||||
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
||||
x = x.view(bs, length, heads, -1)
|
||||
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
||||
x = x.transpose(1, 2)
|
||||
@ -44,7 +44,6 @@ class PerceiverAttention(nn.Module):
|
||||
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
||||
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
||||
|
||||
|
||||
def forward(self, x, latents):
|
||||
"""
|
||||
Args:
|
||||
@ -68,7 +67,7 @@ class PerceiverAttention(nn.Module):
|
||||
|
||||
# attention
|
||||
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
||||
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
||||
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
||||
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
out = weight @ v
|
||||
|
||||
@ -110,7 +109,6 @@ class Resampler(nn.Module):
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
latents = self.latents.repeat(x.size(0), 1, 1)
|
||||
|
||||
x = self.proj_in(x)
|
||||
|
@ -15,7 +15,6 @@ from diffusers.models import ControlNetModel
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
|
||||
|
||||
|
||||
def is_torch2_available():
|
||||
return hasattr(F, "scaled_dot_product_attention")
|
||||
|
||||
@ -150,9 +149,7 @@ def generate(
|
||||
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
||||
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
||||
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
||||
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
|
||||
control_guidance_end
|
||||
]
|
||||
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [control_guidance_end]
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
@ -192,9 +189,7 @@ def generate(
|
||||
guess_mode = guess_mode or global_pool_conditions
|
||||
|
||||
# 3. Encode input prompt
|
||||
text_encoder_lora_scale = (
|
||||
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
||||
)
|
||||
text_encoder_lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
||||
prompt_embeds = self._encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
|
@ -179,6 +179,7 @@ class IPAdapterData:
|
||||
# weight: Union[float, List[float]] = Field(default=1.0)
|
||||
weight: float = Field(default=1.0)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ConditioningData:
|
||||
unconditioned_embeddings: BasicConditioningInfo
|
||||
@ -442,7 +443,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
ip_adapter_data: List[IPAdapterData] = None,
|
||||
callback: Callable[[PipelineIntermediateState], None] = None,
|
||||
):
|
||||
|
||||
self._adjust_memory_efficient_attention(latents)
|
||||
if additional_guidance is None:
|
||||
additional_guidance = []
|
||||
@ -469,30 +469,33 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
#
|
||||
if "sdxl" in ip_adapter_info.ip_adapter_model:
|
||||
print("using IPAdapterXL")
|
||||
ip_adapter = IPAdapterXL(self,
|
||||
ip_adapter_info.image_encoder_model,
|
||||
ip_adapter_info.ip_adapter_model,
|
||||
self.unet.device)
|
||||
ip_adapter = IPAdapterXL(
|
||||
self, ip_adapter_info.image_encoder_model, ip_adapter_info.ip_adapter_model, self.unet.device
|
||||
)
|
||||
elif "plus" in ip_adapter_info.ip_adapter_model:
|
||||
print("using IPAdapterPlus")
|
||||
ip_adapter = IPAdapterPlus(self, # IPAdapterPlus first arg is StableDiffusionPipeline
|
||||
ip_adapter_info.image_encoder_model,
|
||||
ip_adapter_info.ip_adapter_model,
|
||||
self.unet.device,
|
||||
num_tokens=16)
|
||||
ip_adapter = IPAdapterPlus(
|
||||
self, # IPAdapterPlus first arg is StableDiffusionPipeline
|
||||
ip_adapter_info.image_encoder_model,
|
||||
ip_adapter_info.ip_adapter_model,
|
||||
self.unet.device,
|
||||
num_tokens=16,
|
||||
)
|
||||
else:
|
||||
print("using IPAdapter")
|
||||
ip_adapter = IPAdapter(self, # IPAdapter first arg is StableDiffusionPipeline
|
||||
ip_adapter_info.image_encoder_model,
|
||||
ip_adapter_info.ip_adapter_model,
|
||||
self.unet.device)
|
||||
ip_adapter = IPAdapter(
|
||||
self, # IPAdapter first arg is StableDiffusionPipeline
|
||||
ip_adapter_info.image_encoder_model,
|
||||
ip_adapter_info.ip_adapter_model,
|
||||
self.unet.device,
|
||||
)
|
||||
# IP-Adapter ==> add additional cross-attention layers to UNet model here?
|
||||
ip_adapter.set_scale(ip_adapter_info.weight)
|
||||
print("ip_adapter:", ip_adapter)
|
||||
|
||||
# get image embedding from CLIP and ImageProjModel
|
||||
print("getting image embeddings from IP-Adapter...")
|
||||
num_samples = 1 # hardwiring for first pass
|
||||
num_samples = 1 # hardwiring for first pass
|
||||
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter.get_image_embeds(ip_adapter_image)
|
||||
print("image cond embeds shape:", image_prompt_embeds.shape)
|
||||
print("image uncond embeds shape:", uncond_image_prompt_embeds.shape)
|
||||
|
Loading…
Reference in New Issue
Block a user