cleanup: merge conflicts

This commit is contained in:
blessedcoolant 2023-09-05 11:37:12 +12:00
parent 6bb378a101
commit 07381e5a26
8 changed files with 86 additions and 69 deletions

View File

@ -29,6 +29,7 @@ CONTROLNET_RESIZE_VALUES = Literal[
"just_resize_simple",
]
class ControlNetModelField(BaseModel):
"""ControlNet model field"""
@ -68,6 +69,7 @@ class ControlField(BaseModel):
raise ValueError("Control weights must be within -1 to 2 range")
return v
@invocation_output("control_output")
class ControlOutput(BaseInvocationOutput):
"""node output for ControlNet info"""
@ -78,7 +80,6 @@ class ControlOutput(BaseInvocationOutput):
control: ControlField = OutputField(description=FieldDescriptions.control)
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet")
class ControlNetInvocation(BaseInvocation):
"""Collects ControlNet info to pass to other nodes"""
@ -119,19 +120,21 @@ class ControlNetInvocation(BaseInvocation):
),
)
IP_ADAPTER_MODELS = Literal[
"models_ip_adapter/models/ip-adapter_sd15.bin",
"models_ip_adapter/models/ip-adapter-plus_sd15.bin",
"models_ip_adapter/models/ip-adapter-plus-face_sd15.bin",
"models_ip_adapter/sdxl_models/ip-adapter_sdxl.bin"
"models_ip_adapter/sdxl_models/ip-adapter_sdxl.bin",
]
IP_ADAPTER_IMAGE_ENCODER_MODELS = Literal[
"models_ip_adapter/models/image_encoder/",
"./models_ip_adapter/models/image_encoder/",
"models_ip_adapter/sdxl_models/image_encoder/"
"models_ip_adapter/sdxl_models/image_encoder/",
]
@invocation("ipadapter", title="IP-Adapter", tags=["ipadapter"], category="ipadapter")
class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes"""
@ -140,14 +143,15 @@ class IPAdapterInvocation(BaseInvocation):
# Inputs
image: ImageField = InputField(description="The control image")
#control_model: ControlNetModelField = InputField(
# control_model: ControlNetModelField = InputField(
# default="lllyasviel/sd-controlnet-canny", description=FieldDescriptions.controlnet_model, input=Input.Direct
#)
ip_adapter_model: IP_ADAPTER_MODELS = InputField(default="./models_ip_adapter/models/ip-adapter_sd15.bin",
description="The IP-Adapter model")
# )
ip_adapter_model: IP_ADAPTER_MODELS = InputField(
default="./models_ip_adapter/models/ip-adapter_sd15.bin", description="The IP-Adapter model"
)
image_encoder_model: IP_ADAPTER_IMAGE_ENCODER_MODELS = InputField(
default="./models_ip_adapter/models/image_encoder/",
description="The image encoder model")
default="./models_ip_adapter/models/image_encoder/", description="The image encoder model"
)
control_weight: Union[float, List[float]] = InputField(
default=1.0, description="The weight given to the ControlNet", ui_type=UIType.Float
)
@ -172,9 +176,9 @@ class IPAdapterInvocation(BaseInvocation):
image_encoder_model=self.image_encoder_model,
control_weight=self.control_weight,
# rest are currently ignored
#begin_step_percent=self.begin_step_percent,
#end_step_percent=self.end_step_percent,
#control_mode=self.control_mode,
#resize_mode=self.resize_mode,
# begin_step_percent=self.begin_step_percent,
# end_step_percent=self.end_step_percent,
# control_mode=self.control_mode,
# resize_mode=self.resize_mode,
),
)

View File

@ -1,7 +1,7 @@
# Invocations for ControlNet image preprocessors
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
from builtins import bool, float
from typing import Dict, List, Literal, Optional, Union
from typing import Dict, List, Optional
import cv2
import numpy as np
@ -27,17 +27,7 @@ from PIL import Image
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from ..models.image import ImageCategory, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
FieldDescriptions,
Input,
InputField,
InvocationContext,
OutputField,
UIType,
invocation,
)
from .baseinvocation import BaseInvocation, FieldDescriptions, InputField, InvocationContext, invocation
@invocation(

View File

@ -65,7 +65,6 @@ from .control_adapter import ControlField
from .model import ModelInfo, UNetField, VaeField
DEFAULT_PRECISION = choose_precision(choose_torch_device())
SAMPLER_NAME_VALUES = Literal[tuple(list(SCHEDULER_MAP.keys()))]
@ -387,7 +386,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
resize_mode=control_info.resize_mode,
)
control_item = ControlNetData(
model=control_model, # model object
model=control_model, # model object
image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
@ -404,7 +403,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
input_image = context.services.images.get_pil_image(control_image_field.image_name)
control_item = IPAdapterData(
ip_adapter_model=control_info.ip_adapter_model, # name of model (NOT model object)
image_encoder_model=control_info.image_encoder_model, # name of model (NOT model obj)
image_encoder_model=control_info.image_encoder_model, # name of model (NOT model obj)
image=input_image,
weight=control_info.control_weight,
)
@ -564,8 +563,8 @@ class DenoiseLatentsInvocation(BaseInvocation):
conditioning_data=conditioning_data,
control_data=controlnet_data, # list[ControlNetData],
ip_adapter_data=ip_adapter_data, # list[IPAdapterData],
# ip_adapter_image=unwrapped_ip_adapter_image,
# ip_adapter_strength=self.ip_adapter_strength,
# ip_adapter_image=unwrapped_ip_adapter_image,
# ip_adapter_strength=self.ip_adapter_strength,
callback=step_callback,
)

View File

@ -12,6 +12,7 @@ class AttnProcessor(nn.Module):
r"""
Default processor for performing attention-related computations.
"""
def __init__(
self,
hidden_size=None,
@ -140,7 +141,10 @@ class IPAttnProcessor(nn.Module):
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
# split hidden states
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :self.text_context_len, :], encoder_hidden_states[:, self.text_context_len:, :]
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, : self.text_context_len, :],
encoder_hidden_states[:, self.text_context_len :, :],
)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
@ -186,6 +190,7 @@ class AttnProcessor2_0(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(
self,
hidden_size=None,
@ -338,7 +343,10 @@ class IPAttnProcessor2_0(torch.nn.Module):
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
# split hidden states
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :self.text_context_len, :], encoder_hidden_states[:, self.text_context_len:, :]
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, : self.text_context_len, :],
encoder_hidden_states[:, self.text_context_len :, :],
)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)

View File

@ -22,6 +22,7 @@ from .resampler import Resampler
class ImageProjModel(torch.nn.Module):
"""Projection Model"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
@ -32,15 +33,15 @@ class ImageProjModel(torch.nn.Module):
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim
)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class IPAdapter:
def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
self.device = device
self.image_encoder_path = image_encoder_path
self.ip_ckpt = ip_ckpt
@ -54,7 +55,9 @@ class IPAdapter:
self.set_ip_adapter()
# load image encoder
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(self.device, dtype=torch.float16)
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
self.device, dtype=torch.float16
)
self.clip_image_processor = CLIPImageProcessor()
# image proj model
self.image_proj_model = self.init_proj()
@ -88,8 +91,9 @@ class IPAdapter:
attn_procs[name] = AttnProcessor()
else:
print("swapping in IPAttnProcessor for", name)
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,
scale=1.0).to(self.device, dtype=torch.float16)
attn_procs[name] = IPAttnProcessor(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0
).to(self.device, dtype=torch.float16)
unet.set_attn_processor(attn_procs)
print("Modified UNet Attn Processors count:", len(unet.attn_processors))
print(unet.attn_processors.keys())
@ -155,7 +159,12 @@ class IPAdapter:
with torch.inference_mode():
prompt_embeds = self.pipe._encode_prompt(
prompt, device=self.device, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
prompt,
device=self.device,
num_images_per_prompt=num_samples,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
negative_prompt_embeds_, prompt_embeds_ = prompt_embeds.chunk(2)
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
@ -212,8 +221,17 @@ class IPAdapterXL(IPAdapter):
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
with torch.inference_mode():
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = self.pipe.encode_prompt(
prompt, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.pipe.encode_prompt(
prompt,
num_images_per_prompt=num_samples,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
@ -243,7 +261,7 @@ class IPAdapterPlus(IPAdapter):
num_queries=self.num_tokens,
embedding_dim=self.image_encoder.config.hidden_size,
output_dim=self.pipe.unet.config.cross_attention_dim,
ff_mult=4
ff_mult=4,
).to(self.device, dtype=torch.float16)
return image_proj_model
@ -255,6 +273,8 @@ class IPAdapterPlus(IPAdapter):
clip_image = clip_image.to(self.device, dtype=torch.float16)
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2]
uncond_clip_image_embeds = self.image_encoder(
torch.zeros_like(clip_image), output_hidden_states=True
).hidden_states[-2]
uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
return image_prompt_embeds, uncond_image_prompt_embeds

View File

@ -20,7 +20,7 @@ def FeedForward(dim, mult=4):
def reshape_tensor(x, heads):
bs, length, width = x.shape
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
@ -44,7 +44,6 @@ class PerceiverAttention(nn.Module):
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
@ -68,7 +67,7 @@ class PerceiverAttention(nn.Module):
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
@ -110,7 +109,6 @@ class Resampler(nn.Module):
)
def forward(self, x):
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)

View File

@ -15,7 +15,6 @@ from diffusers.models import ControlNetModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
def is_torch2_available():
return hasattr(F, "scaled_dot_product_attention")
@ -150,9 +149,7 @@ def generate(
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
control_guidance_end
]
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [control_guidance_end]
# 1. Check inputs. Raise error if not correct
self.check_inputs(
@ -192,9 +189,7 @@ def generate(
guess_mode = guess_mode or global_pool_conditions
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
text_encoder_lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
prompt_embeds = self._encode_prompt(
prompt,
device,

View File

@ -179,6 +179,7 @@ class IPAdapterData:
# weight: Union[float, List[float]] = Field(default=1.0)
weight: float = Field(default=1.0)
@dataclass
class ConditioningData:
unconditioned_embeddings: BasicConditioningInfo
@ -442,7 +443,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
ip_adapter_data: List[IPAdapterData] = None,
callback: Callable[[PipelineIntermediateState], None] = None,
):
self._adjust_memory_efficient_attention(latents)
if additional_guidance is None:
additional_guidance = []
@ -469,30 +469,33 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
#
if "sdxl" in ip_adapter_info.ip_adapter_model:
print("using IPAdapterXL")
ip_adapter = IPAdapterXL(self,
ip_adapter_info.image_encoder_model,
ip_adapter_info.ip_adapter_model,
self.unet.device)
ip_adapter = IPAdapterXL(
self, ip_adapter_info.image_encoder_model, ip_adapter_info.ip_adapter_model, self.unet.device
)
elif "plus" in ip_adapter_info.ip_adapter_model:
print("using IPAdapterPlus")
ip_adapter = IPAdapterPlus(self, # IPAdapterPlus first arg is StableDiffusionPipeline
ip_adapter_info.image_encoder_model,
ip_adapter_info.ip_adapter_model,
self.unet.device,
num_tokens=16)
ip_adapter = IPAdapterPlus(
self, # IPAdapterPlus first arg is StableDiffusionPipeline
ip_adapter_info.image_encoder_model,
ip_adapter_info.ip_adapter_model,
self.unet.device,
num_tokens=16,
)
else:
print("using IPAdapter")
ip_adapter = IPAdapter(self, # IPAdapter first arg is StableDiffusionPipeline
ip_adapter_info.image_encoder_model,
ip_adapter_info.ip_adapter_model,
self.unet.device)
ip_adapter = IPAdapter(
self, # IPAdapter first arg is StableDiffusionPipeline
ip_adapter_info.image_encoder_model,
ip_adapter_info.ip_adapter_model,
self.unet.device,
)
# IP-Adapter ==> add additional cross-attention layers to UNet model here?
ip_adapter.set_scale(ip_adapter_info.weight)
print("ip_adapter:", ip_adapter)
# get image embedding from CLIP and ImageProjModel
print("getting image embeddings from IP-Adapter...")
num_samples = 1 # hardwiring for first pass
num_samples = 1 # hardwiring for first pass
image_prompt_embeds, uncond_image_prompt_embeds = ip_adapter.get_image_embeds(ip_adapter_image)
print("image cond embeds shape:", image_prompt_embeds.shape)
print("image uncond embeds shape:", uncond_image_prompt_embeds.shape)