InvokeAI/invokeai/backend/ip_adapter/resampler.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

167 lines
5.0 KiB
Python
Raw Normal View History

# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0)
2023-09-04 23:54:28 +00:00
# tencent ailab comment: modified from
# https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
import math
import torch
import torch.nn as nn
# FFN
def FeedForward(dim: int, mult: int = 4):
inner_dim = dim * mult
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x: torch.Tensor, heads: int):
bs, length, _ = x.shape
2023-09-04 23:37:12 +00:00
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttention(nn.Module):
def __init__(self, *, dim: int, dim_head: int = 64, heads: int = 8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x: torch.Tensor, latents: torch.Tensor):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
2023-11-10 23:54:52 +00:00
b, L, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
2023-09-04 23:37:12 +00:00
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
2023-11-10 23:54:52 +00:00
out = out.permute(0, 2, 1, 3).reshape(b, L, -1)
return self.to_out(out)
class Resampler(nn.Module):
def __init__(
self,
dim: int = 1024,
depth: int = 8,
dim_head: int = 64,
heads: int = 16,
num_queries: int = 8,
embedding_dim: int = 768,
output_dim: int = 1024,
ff_mult: int = 4,
):
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
@classmethod
def from_state_dict(
cls,
state_dict: dict[str, torch.Tensor],
depth: int = 8,
dim_head: int = 64,
heads: int = 16,
num_queries: int = 8,
ff_mult: int = 4,
):
"""A convenience function that initializes a Resampler from a state_dict.
Some of the shape parameters are inferred from the state_dict (e.g. dim, embedding_dim, etc.). At the time of
writing, we did not have a need for inferring ALL of the shape parameters from the state_dict, but this would be
possible if needed in the future.
Args:
state_dict (dict[torch.Tensor]): The state_dict to load.
depth (int, optional):
dim_head (int, optional):
heads (int, optional):
ff_mult (int, optional):
Returns:
Resampler
"""
dim = state_dict["latents"].shape[2]
num_queries = state_dict["latents"].shape[1]
embedding_dim = state_dict["proj_in.weight"].shape[-1]
output_dim = state_dict["norm_out.weight"].shape[0]
model = cls(
dim=dim,
depth=depth,
dim_head=dim_head,
heads=heads,
num_queries=num_queries,
embedding_dim=embedding_dim,
output_dim=output_dim,
ff_mult=ff_mult,
)
model.load_state_dict(state_dict)
return model
def forward(self, x: torch.Tensor):
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)