InvokeAI/ldm/modules/encoders/modules.py

571 lines
17 KiB
Python
Raw Normal View History

import math
2021-12-21 02:23:41 +00:00
import torch
import torch.nn as nn
from functools import partial
2022-08-10 14:30:49 +00:00
import clip
from einops import rearrange, repeat
from transformers import CLIPTokenizer, CLIPTextModel
import kornia
from ldm.invoke.devices import choose_torch_device
2021-12-21 02:23:41 +00:00
from ldm.modules.x_transformer import (
Encoder,
TransformerWrapper,
) # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
2021-12-21 02:23:41 +00:00
def _expand_mask(mask, dtype, tgt_len=None):
2022-08-23 22:26:28 +00:00
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = (
mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
)
2022-08-23 22:26:28 +00:00
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.finfo(dtype).min
)
2022-08-23 22:26:28 +00:00
def _build_causal_attention_mask(bsz, seq_len, dtype):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
mask.fill_(torch.tensor(torch.finfo(dtype).min))
mask.triu_(1) # zero out the lower diagonal
mask = mask.unsqueeze(1) # expand mask
return mask
2021-12-21 02:23:41 +00:00
class AbstractEncoder(nn.Module):
def __init__(self):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
class ClassEmbedder(nn.Module):
def __init__(self, embed_dim, n_classes=1000, key='class'):
super().__init__()
self.key = key
self.embedding = nn.Embedding(n_classes, embed_dim)
def forward(self, batch, key=None):
if key is None:
key = self.key
# this is for use in crossattn
c = batch[key][:, None]
c = self.embedding(c)
return c
class TransformerEmbedder(AbstractEncoder):
"""Some transformer encoder layers"""
def __init__(
self,
n_embed,
n_layer,
vocab_size,
max_seq_len=77,
device=choose_torch_device(),
):
2021-12-21 02:23:41 +00:00
super().__init__()
self.device = device
self.transformer = TransformerWrapper(
num_tokens=vocab_size,
max_seq_len=max_seq_len,
attn_layers=Encoder(dim=n_embed, depth=n_layer),
)
2021-12-21 02:23:41 +00:00
def forward(self, tokens):
tokens = tokens.to(self.device) # meh
z = self.transformer(tokens, return_embeddings=True)
return z
def encode(self, x):
return self(x)
class BERTTokenizer(AbstractEncoder):
"""Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
def __init__(
self, device=choose_torch_device(), vq_interface=True, max_length=77
):
2021-12-21 02:23:41 +00:00
super().__init__()
from transformers import (
BertTokenizerFast,
) # TODO: add to reuquirements
# Modified to allow to run on non-internet connected compute nodes.
# Model needs to be loaded into cache from an internet-connected machine
# by running:
# from transformers import BertTokenizerFast
# BertTokenizerFast.from_pretrained("bert-base-uncased")
try:
self.tokenizer = BertTokenizerFast.from_pretrained(
'bert-base-uncased', local_files_only=True
)
except OSError:
raise SystemExit(
"* Couldn't load Bert tokenizer files. Try running scripts/preload_models.py from an internet-conected machine."
)
2021-12-21 02:23:41 +00:00
self.device = device
self.vq_interface = vq_interface
self.max_length = max_length
def forward(self, text):
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False,
padding='max_length',
return_tensors='pt',
)
tokens = batch_encoding['input_ids'].to(self.device)
2021-12-21 02:23:41 +00:00
return tokens
@torch.no_grad()
def encode(self, text):
tokens = self(text)
if not self.vq_interface:
return tokens
return None, None, [None, None, tokens]
def decode(self, text):
return text
class BERTEmbedder(AbstractEncoder):
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
def __init__(
self,
n_embed,
n_layer,
vocab_size=30522,
max_seq_len=77,
device=choose_torch_device(),
use_tokenizer=True,
embedding_dropout=0.0,
):
2021-12-21 02:23:41 +00:00
super().__init__()
self.use_tknz_fn = use_tokenizer
if self.use_tknz_fn:
self.tknz_fn = BERTTokenizer(
vq_interface=False, max_length=max_seq_len
)
2021-12-21 02:23:41 +00:00
self.device = device
self.transformer = TransformerWrapper(
num_tokens=vocab_size,
max_seq_len=max_seq_len,
attn_layers=Encoder(dim=n_embed, depth=n_layer),
emb_dropout=embedding_dropout,
)
2021-12-21 02:23:41 +00:00
2022-08-23 22:26:28 +00:00
def forward(self, text, embedding_manager=None):
2021-12-21 02:23:41 +00:00
if self.use_tknz_fn:
tokens = self.tknz_fn(text) # .to(self.device)
2021-12-21 02:23:41 +00:00
else:
tokens = text
z = self.transformer(
tokens, return_embeddings=True, embedding_manager=embedding_manager
)
2021-12-21 02:23:41 +00:00
return z
2022-08-23 22:26:28 +00:00
def encode(self, text, **kwargs):
2021-12-21 02:23:41 +00:00
# output of length 77
2022-08-23 22:26:28 +00:00
return self(text, **kwargs)
2021-12-21 02:23:41 +00:00
2021-12-21 02:23:41 +00:00
class SpatialRescaler(nn.Module):
def __init__(
self,
n_stages=1,
method='bilinear',
multiplier=0.5,
in_channels=3,
out_channels=None,
bias=False,
):
2021-12-21 02:23:41 +00:00
super().__init__()
self.n_stages = n_stages
assert self.n_stages >= 0
assert method in [
'nearest',
'linear',
'bilinear',
'trilinear',
'bicubic',
'area',
]
2021-12-21 02:23:41 +00:00
self.multiplier = multiplier
self.interpolator = partial(
torch.nn.functional.interpolate, mode=method
)
2021-12-21 02:23:41 +00:00
self.remap_output = out_channels is not None
if self.remap_output:
print(
f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.'
)
self.channel_mapper = nn.Conv2d(
in_channels, out_channels, 1, bias=bias
)
2021-12-21 02:23:41 +00:00
def forward(self, x):
2021-12-21 02:23:41 +00:00
for stage in range(self.n_stages):
x = self.interpolator(x, scale_factor=self.multiplier)
if self.remap_output:
x = self.channel_mapper(x)
return x
def encode(self, x):
return self(x)
2022-08-10 14:30:49 +00:00
2022-08-10 14:30:49 +00:00
class FrozenCLIPEmbedder(AbstractEncoder):
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
def __init__(
self,
version='openai/clip-vit-large-patch14',
device=choose_torch_device(),
max_length=77,
):
2022-08-10 14:30:49 +00:00
super().__init__()
self.tokenizer = CLIPTokenizer.from_pretrained(
version, local_files_only=True
)
self.transformer = CLIPTextModel.from_pretrained(
version, local_files_only=True
)
2022-08-10 14:30:49 +00:00
self.device = device
self.max_length = max_length
self.freeze()
2022-08-23 22:26:28 +00:00
def embedding_forward(
self,
input_ids=None,
position_ids=None,
inputs_embeds=None,
embedding_manager=None,
) -> torch.Tensor:
seq_length = (
input_ids.shape[-1]
if input_ids is not None
else inputs_embeds.shape[-2]
)
2022-08-23 22:26:28 +00:00
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
2022-08-23 22:26:28 +00:00
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
2022-08-23 22:26:28 +00:00
if embedding_manager is not None:
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
2022-08-23 22:26:28 +00:00
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
2022-08-23 22:26:28 +00:00
return embeddings
2022-08-23 22:26:28 +00:00
self.transformer.text_model.embeddings.forward = (
embedding_forward.__get__(self.transformer.text_model.embeddings)
)
2022-08-23 22:26:28 +00:00
def encoder_forward(
self,
inputs_embeds,
attention_mask=None,
causal_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
2022-08-23 22:26:28 +00:00
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
2022-08-23 22:26:28 +00:00
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict
if return_dict is not None
else self.config.use_return_dict
2022-08-23 22:26:28 +00:00
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
return hidden_states
self.transformer.text_model.encoder.forward = encoder_forward.__get__(
self.transformer.text_model.encoder
)
2022-08-23 22:26:28 +00:00
def text_encoder_forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
embedding_manager=None,
2022-08-23 22:26:28 +00:00
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
2022-08-23 22:26:28 +00:00
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict
if return_dict is not None
else self.config.use_return_dict
2022-08-23 22:26:28 +00:00
)
if input_ids is None:
raise ValueError('You have to specify either input_ids')
2022-08-23 22:26:28 +00:00
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
embedding_manager=embedding_manager,
)
2022-08-23 22:26:28 +00:00
bsz, seq_len = input_shape
# CLIP's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = _build_causal_attention_mask(
bsz, seq_len, hidden_states.dtype
).to(hidden_states.device)
2022-08-23 22:26:28 +00:00
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(
attention_mask, hidden_states.dtype
)
2022-08-23 22:26:28 +00:00
last_hidden_state = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = self.final_layer_norm(last_hidden_state)
return last_hidden_state
self.transformer.text_model.forward = text_encoder_forward.__get__(
self.transformer.text_model
)
2022-08-23 22:26:28 +00:00
def transformer_forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
embedding_manager=None,
2022-08-23 22:26:28 +00:00
):
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
embedding_manager=embedding_manager,
2022-08-23 22:26:28 +00:00
)
self.transformer.forward = transformer_forward.__get__(
self.transformer
)
2022-08-23 22:26:28 +00:00
2022-08-10 14:30:49 +00:00
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
2022-08-23 22:26:28 +00:00
def forward(self, text, **kwargs):
should_return_tokens = False
if 'return_tokens' in kwargs:
should_return_tokens = kwargs.get('return_tokens', False)
# self.transformer doesn't like having extra kwargs
kwargs.pop('return_tokens')
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False,
padding='max_length',
return_tensors='pt',
)
tokens = batch_encoding['input_ids'].to(self.device)
2022-08-23 22:26:28 +00:00
z = self.transformer(input_ids=tokens, **kwargs)
2022-08-10 14:30:49 +00:00
if should_return_tokens:
return z, tokens
else:
return z
2022-08-10 14:30:49 +00:00
2022-08-23 22:26:28 +00:00
def encode(self, text, **kwargs):
return self(text, **kwargs)
2022-08-10 14:30:49 +00:00
class WeightedFrozenCLIPEmbedder(FrozenCLIPEmbedder):
@classmethod
def apply_embedding_weights(self, embeddings: torch.Tensor, per_embedding_weights: list[float], normalize:bool) -> torch.Tensor:
per_embedding_weights = torch.tensor(per_embedding_weights, dtype=embeddings.dtype, device=embeddings.device)
if normalize:
per_embedding_weights = per_embedding_weights / torch.sum(per_embedding_weights)
reshaped_weights = per_embedding_weights.reshape(per_embedding_weights.shape + (1, 1,))
return torch.sum(embeddings * reshaped_weights, dim=1)
2022-08-10 14:30:49 +00:00
class FrozenCLIPTextEmbedder(nn.Module):
"""
Uses the CLIP transformer encoder for text.
"""
def __init__(
self,
version='ViT-L/14',
device=choose_torch_device(),
max_length=77,
n_repeat=1,
normalize=True,
):
2022-08-10 14:30:49 +00:00
super().__init__()
self.model, _ = clip.load(version, jit=False, device=device)
2022-08-10 14:30:49 +00:00
self.device = device
self.max_length = max_length
self.n_repeat = n_repeat
self.normalize = normalize
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
tokens = clip.tokenize(text).to(self.device)
z = self.model.encode_text(tokens)
if self.normalize:
z = z / torch.linalg.norm(z, dim=1, keepdim=True)
return z
def encode(self, text):
z = self(text)
if z.ndim == 2:
2022-08-10 14:30:49 +00:00
z = z[:, None, :]
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
return z
class FrozenClipImageEmbedder(nn.Module):
"""
Uses the CLIP image encoder.
"""
2022-08-10 14:30:49 +00:00
def __init__(
self,
model,
jit=False,
device=choose_torch_device(),
antialias=False,
):
2022-08-10 14:30:49 +00:00
super().__init__()
self.model, _ = clip.load(name=model, device=device, jit=jit)
self.antialias = antialias
self.register_buffer(
'mean',
torch.Tensor([0.48145466, 0.4578275, 0.40821073]),
persistent=False,
)
self.register_buffer(
'std',
torch.Tensor([0.26862954, 0.26130258, 0.27577711]),
persistent=False,
)
2022-08-10 14:30:49 +00:00
def preprocess(self, x):
# normalize to [0,1]
x = kornia.geometry.resize(
x,
(224, 224),
interpolation='bicubic',
align_corners=True,
antialias=self.antialias,
)
x = (x + 1.0) / 2.0
2022-08-10 14:30:49 +00:00
# renormalize according to clip
x = kornia.enhance.normalize(x, self.mean, self.std)
return x
def forward(self, x):
# x is assumed to be in range [-1,1]
return self.model.encode_image(self.preprocess(x))
if __name__ == '__main__':
2022-08-10 14:30:49 +00:00
from ldm.util import count_params
2022-08-10 14:30:49 +00:00
model = FrozenCLIPEmbedder()
count_params(model, verbose=True)