mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
added customized patches and updated the README
This commit is contained in:
parent
d39f5b51a8
commit
d6124c44a3
91
README.md
91
README.md
@ -1,4 +1,95 @@
|
||||
# Stable Diffusion
|
||||
|
||||
This is a fork of CompVis/stable-diffusion, the wonderful open source
|
||||
text-to-image generator.
|
||||
|
||||
The original has been modified in several minor ways:
|
||||
|
||||
## Simplified API for text to image generation
|
||||
|
||||
There is now a simplified API for text to image generation, which
|
||||
lets you create images from a prompt in just three lines of code:
|
||||
|
||||
~~~~
|
||||
from ldm.simplet2i import T2I
|
||||
model = T2I()
|
||||
model.text2image("a unicorn in manhattan")
|
||||
~~~~
|
||||
|
||||
Please see ldm/simplet2i.py for more information.
|
||||
|
||||
## Interactive command-line interface similar to the Discord bot
|
||||
|
||||
There is now a command-line script, located in scripts/dream.py, which
|
||||
provides an interactive interface to image generation similar to
|
||||
the "dream mothership" bot that Stable AI provided on its Discord
|
||||
server. The advantage of this is that the lengthy model
|
||||
initialization only happens once. After that image generation is
|
||||
fast.
|
||||
|
||||
Note that this has only been tested in the Linux environment!
|
||||
|
||||
(ldm) ~/stable-diffusion$ ./scripts/dream.py
|
||||
* Initializing, be patient...
|
||||
|
||||
Loading model from models/ldm/text2img-large/model.ckpt
|
||||
LatentDiffusion: Running in eps-prediction mode
|
||||
DiffusionWrapper has 872.30 M params.
|
||||
making attention of type 'vanilla' with 512 in_channels
|
||||
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
|
||||
making attention of type 'vanilla' with 512 in_channels
|
||||
Loading Bert tokenizer from "models/bert"
|
||||
setting sampler to plms
|
||||
|
||||
* Initialization done! Awaiting your command...
|
||||
dream> ashley judd riding a camel -n2
|
||||
Outputs:
|
||||
outputs/txt2img-samples/00009.png: "ashley judd riding a camel" -n2 -S 416354203
|
||||
outputs/txt2img-samples/00010.png: "ashley judd riding a camel" -n2 -S 1362479620
|
||||
|
||||
Command-line arguments ("./scripts/dream.py -h") allow you to change
|
||||
various defaults, and select between the mature stable-diffusion
|
||||
weights (512x512) and the older (256x256) latent diffusion weights
|
||||
(laion400m).
|
||||
|
||||
## No need for internet connectivity when loading the model
|
||||
|
||||
My development machine is a GPU node in a high-performance compute
|
||||
cluster which has no connection to the internet. During model
|
||||
initialization, stable-diffusion tries to download the Bert tokenizer
|
||||
model from huggingface.co. This obviously didn't work for me.
|
||||
|
||||
Rather than set up a hugging face local hub, I found the most
|
||||
expedient thing to do was to download the Bert tokenizer in advance,
|
||||
and patch stable-diffusion to read it from the local disk. The steps
|
||||
to do this are:
|
||||
|
||||
(ldm) ~/stable-diffusion$ mkdir ./models/bert
|
||||
> python3
|
||||
>>> from transformers import BertTokenizerFast
|
||||
>>> model = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
||||
>>> model.save_pretrained("./models/bert")
|
||||
|
||||
(Make sure you are in the stable-diffusion directory when you do
|
||||
this!)
|
||||
|
||||
If you don't like this change, just copy over the file
|
||||
ldm/modules/encoders/modules.py from the CompVis/stable-diffusion
|
||||
repository.
|
||||
|
||||
## Minor fixes
|
||||
|
||||
I added the requirement for torchmetrics to environment.yaml.
|
||||
|
||||
## Installation and support
|
||||
|
||||
Follow the directions from the original README, which starts below, to
|
||||
configure the environment and install requirements. For support,
|
||||
please use this repository's GitHub Issues tracking service.
|
||||
|
||||
Author: Lincoln D. Stein <lincoln.stein@gmail.com>
|
||||
|
||||
# Original README from CompViz/stable-diffusion
|
||||
*Stable Diffusion was made possible thanks to a collaboration with [Stability AI](https://stability.ai/) and [Runway](https://runwayml.com/) and builds upon our previous work:*
|
||||
|
||||
[**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)<br/>
|
||||
|
@ -135,7 +135,7 @@ class DDIMSampler(object):
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
||||
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps, dynamic_ncols=True)
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
@ -238,4 +238,4 @@ class DDIMSampler(object):
|
||||
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning)
|
||||
return x_dec
|
||||
return x_dec
|
||||
|
@ -255,7 +255,7 @@ class DDPM(pl.LightningModule):
|
||||
b = shape[0]
|
||||
img = torch.randn(shape, device=device)
|
||||
intermediates = [img]
|
||||
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
||||
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps, dynamic_ncols=True):
|
||||
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
||||
clip_denoised=self.clip_denoised)
|
||||
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
||||
|
@ -92,7 +92,7 @@ class PLMSSampler(object):
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for PLMS sampling is {size}')
|
||||
# print(f'Data shape for PLMS sampling is {size}')
|
||||
|
||||
samples, intermediates = self.plms_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
@ -134,9 +134,9 @@ class PLMSSampler(object):
|
||||
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
||||
# print(f"Running PLMS Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
||||
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps, dynamic_ncols=True)
|
||||
old_eps = []
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
|
@ -55,7 +55,10 @@ class BERTTokenizer(AbstractEncoder):
|
||||
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
||||
super().__init__()
|
||||
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
||||
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
||||
fn = 'models/bert'
|
||||
print(f'Loading Bert tokenizer from "{fn}"')
|
||||
# self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
||||
self.tokenizer = BertTokenizerFast.from_pretrained(fn,local_files_only=True)
|
||||
self.device = device
|
||||
self.vq_interface = vq_interface
|
||||
self.max_length = max_length
|
||||
@ -231,4 +234,5 @@ class FrozenClipImageEmbedder(nn.Module):
|
||||
if __name__ == "__main__":
|
||||
from ldm.util import count_params
|
||||
model = FrozenCLIPEmbedder()
|
||||
count_params(model, verbose=True)
|
||||
count_params(model, verbose=True)
|
||||
|
||||
|
258
ldm/simplet2i.py
Normal file
258
ldm/simplet2i.py
Normal file
@ -0,0 +1,258 @@
|
||||
"""Simplified text to image API for stable diffusion/latent diffusion
|
||||
|
||||
Example Usage:
|
||||
|
||||
from ldm.simplet2i import T2I
|
||||
# Create an object with default values
|
||||
t2i = T2I(outdir = <path> // outputs/txt2img-samples
|
||||
model = <path> // models/ldm/stable-diffusion-v1/model.ckpt
|
||||
config = <path> // default="configs/stable-diffusion/v1-inference.yaml
|
||||
batch = <integer> // 1
|
||||
steps = <integer> // 50
|
||||
seed = <integer> // current system time
|
||||
sampler = ['ddim','plms'] // ddim
|
||||
grid = <boolean> // false
|
||||
width = <integer> // image width, multiple of 64 (512)
|
||||
height = <integer> // image height, multiple of 64 (512)
|
||||
cfg_scale = <float> // unconditional guidance scale (7.5)
|
||||
fixed_code = <boolean> // False
|
||||
)
|
||||
# do the slow model initialization
|
||||
t2i.load_model()
|
||||
|
||||
# Do the fast inference & image generation. Any options passed here
|
||||
# override the default values assigned during class initialization
|
||||
# Will call load_model() if the model was not previously loaded.
|
||||
t2i.txt2img(prompt = <string> // required
|
||||
// the remaining option arguments override constructur value when present
|
||||
outdir = <path>
|
||||
iterations = <integer>
|
||||
batch = <integer>
|
||||
steps = <integer>
|
||||
seed = <integer>
|
||||
sampler = ['ddim','plms']
|
||||
grid = <boolean>
|
||||
width = <integer>
|
||||
height = <integer>
|
||||
cfg_scale = <float>
|
||||
) -> boolean
|
||||
|
||||
"""
|
||||
import torch
|
||||
import numpy as np
|
||||
import random
|
||||
import sys
|
||||
import os
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image
|
||||
from tqdm import tqdm, trange
|
||||
from itertools import islice
|
||||
from einops import rearrange
|
||||
from torchvision.utils import make_grid
|
||||
from pytorch_lightning import seed_everything
|
||||
from torch import autocast
|
||||
from contextlib import contextmanager, nullcontext
|
||||
from time import time
|
||||
from math import sqrt
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
|
||||
class T2I:
|
||||
"""T2I class
|
||||
Attributes
|
||||
----------
|
||||
outdir
|
||||
model
|
||||
config
|
||||
iterations
|
||||
batch
|
||||
steps
|
||||
seed
|
||||
sampler
|
||||
grid
|
||||
width
|
||||
height
|
||||
cfg_scale
|
||||
fixed_code
|
||||
latent_channels
|
||||
downsampling_factor
|
||||
precision
|
||||
"""
|
||||
def __init__(self,
|
||||
outdir="outputs/txt2img-samples",
|
||||
batch=1,
|
||||
iterations = 1,
|
||||
width=256, # change to 512 for stable diffusion
|
||||
height=256, # change to 512 for stable diffusion
|
||||
grid=False,
|
||||
steps=50,
|
||||
seed=None,
|
||||
cfg_scale=7.5,
|
||||
weights="models/ldm/stable-diffusion-v1/model.ckpt",
|
||||
config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml",
|
||||
sampler="plms",
|
||||
latent_channels=4,
|
||||
downsampling_factor=8,
|
||||
ddim_eta=0.0, # deterministic
|
||||
fixed_code=False,
|
||||
precision='autocast'
|
||||
):
|
||||
self.outdir = outdir
|
||||
self.batch = batch
|
||||
self.iterations = iterations
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.grid = grid
|
||||
self.steps = steps
|
||||
self.cfg_scale = cfg_scale
|
||||
self.weights = weights
|
||||
self.config = config
|
||||
self.sampler_name = sampler
|
||||
self.fixed_code = fixed_code
|
||||
self.latent_channels = latent_channels
|
||||
self.downsampling_factor = downsampling_factor
|
||||
self.ddim_eta = ddim_eta
|
||||
self.precision = precision
|
||||
self.model = None # empty for now
|
||||
self.sampler = None
|
||||
if seed is None:
|
||||
self.seed = self._new_seed()
|
||||
else:
|
||||
self.seed = seed
|
||||
def txt2img(self,prompt,outdir=None,batch=None,iterations=None,
|
||||
steps=None,seed=None,grid=None,width=None,height=None,
|
||||
cfg_scale=None,ddim_eta=None):
|
||||
""" generate an image from the prompt, writing iteration images into the outdir """
|
||||
outdir = outdir or self.outdir
|
||||
steps = steps or self.steps
|
||||
seed = seed or self.seed
|
||||
width = width or self.width
|
||||
height = height or self.height
|
||||
cfg_scale = cfg_scale or self.cfg_scale
|
||||
ddim_eta = ddim_eta or self.ddim_eta
|
||||
batch = batch or self.batch
|
||||
iterations = iterations or self.iterations
|
||||
if batch > 1:
|
||||
iterations = 1
|
||||
|
||||
model = self.load_model() # will instantiate the model or return it from cache
|
||||
|
||||
if (grid is None):
|
||||
grid = self.grid
|
||||
data = [batch * [prompt]]
|
||||
|
||||
# make directories and establish names for the output files
|
||||
os.makedirs(outdir, exist_ok=True)
|
||||
base_count = len(os.listdir(outdir))-1
|
||||
|
||||
start_code = None
|
||||
if self.fixed_code:
|
||||
start_code = torch.randn([batch,
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
device=self.device)
|
||||
|
||||
precision_scope = autocast if self.precision=="autocast" else nullcontext
|
||||
sampler = self.sampler
|
||||
images = list()
|
||||
seeds = list()
|
||||
|
||||
with torch.no_grad():
|
||||
with precision_scope("cuda"):
|
||||
with model.ema_scope():
|
||||
all_samples = list()
|
||||
for n in trange(iterations, desc="Sampling"):
|
||||
seed_everything(seed)
|
||||
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
|
||||
uc = None
|
||||
if cfg_scale != 1.0:
|
||||
uc = model.get_learned_conditioning(batch * [""])
|
||||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
c = model.get_learned_conditioning(prompts)
|
||||
shape = [self.latent_channels, height // self.downsampling_factor, width // self.downsampling_factor]
|
||||
samples_ddim, _ = sampler.sample(S=steps,
|
||||
conditioning=c,
|
||||
batch_size=batch,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=ddim_eta,
|
||||
x_T=start_code)
|
||||
|
||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
for x_sample in x_samples_ddim:
|
||||
if grid:
|
||||
all_samples.append(x_samples_ddim)
|
||||
seeds.append(seed)
|
||||
else:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
filename = os.path.join(outdir, f"{base_count:05}.png")
|
||||
Image.fromarray(x_sample.astype(np.uint8)).save(filename)
|
||||
images.append([filename,seed])
|
||||
base_count += 1
|
||||
seed = self._new_seed()
|
||||
|
||||
if grid:
|
||||
n_rows = int(sqrt(batch * iterations))
|
||||
# save as grid
|
||||
grid = torch.stack(all_samples, 0)
|
||||
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
||||
grid = make_grid(grid, nrow=n_rows)
|
||||
|
||||
# to image
|
||||
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
||||
filename = os.path.join(outdir, f"{base_count:05}.png")
|
||||
Image.fromarray(grid.astype(np.uint8)).save(filename)
|
||||
for s in seeds:
|
||||
images.append([filename,s])
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def _new_seed(self):
|
||||
self.seed = random.randrange(0,np.iinfo(np.uint32).max)
|
||||
return self.seed
|
||||
|
||||
def load_model(self):
|
||||
""" Load and initialize the model from configuration variables passed at object creation time """
|
||||
if self.model is None:
|
||||
seed_everything(self.seed)
|
||||
try:
|
||||
config = OmegaConf.load(self.config)
|
||||
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
model = self._load_model_from_config(config,self.weights)
|
||||
self.model = model.to(self.device)
|
||||
except AttributeError:
|
||||
raise SystemExit
|
||||
|
||||
if self.sampler_name=='plms':
|
||||
print("setting sampler to plms")
|
||||
self.sampler = PLMSSampler(self.model)
|
||||
elif self.sampler_name == 'ddim':
|
||||
print("setting sampler to ddim")
|
||||
self.sampler = DDIMSampler(self.model)
|
||||
else:
|
||||
print(f"unsupported sampler {self.sampler_name}, defaulting to plms")
|
||||
self.sampler = PLMSSampler(self.model)
|
||||
|
||||
return self.model
|
||||
|
||||
def _load_model_from_config(self, config, ckpt):
|
||||
print(f"Loading model from {ckpt}")
|
||||
pl_sd = torch.load(ckpt, map_location="cpu")
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
sd = pl_sd["state_dict"]
|
||||
model = instantiate_from_config(config.model)
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
model.cuda()
|
||||
model.eval()
|
||||
return model
|
||||
|
@ -12,8 +12,6 @@ from queue import Queue
|
||||
|
||||
from inspect import isfunction
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
|
||||
def log_txt_as_img(wh, xc, size=10):
|
||||
# wh a tuple of (width, height)
|
||||
# xc a list of captions to plot
|
||||
|
144
scripts/dream.py
Executable file
144
scripts/dream.py
Executable file
@ -0,0 +1,144 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import readline
|
||||
import argparse
|
||||
import shlex
|
||||
import atexit
|
||||
from os import path
|
||||
|
||||
def main():
|
||||
arg_parser = create_argv_parser()
|
||||
opt = arg_parser.parse_args()
|
||||
if opt.laion400m:
|
||||
# defaults suitable to the older latent diffusion weights
|
||||
width = 256
|
||||
height = 256
|
||||
config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
|
||||
weights = "models/ldm/text2img-large/model.ckpt"
|
||||
else:
|
||||
# some defaults suitable for stable diffusion weights
|
||||
width = 512
|
||||
height = 512
|
||||
config = "configs/stable-diffusion/v1-inference.yaml"
|
||||
weights = "models/ldm/stable-diffusion-v1/model.ckpt"
|
||||
|
||||
# command line history will be stored in a file called "~/.dream_history"
|
||||
load_history()
|
||||
|
||||
print("* Initializing, be patient...\n")
|
||||
from pytorch_lightning import logging
|
||||
from ldm.simplet2i import T2I
|
||||
|
||||
# creating a simple text2image object with a handful of
|
||||
# defaults passed on the command line.
|
||||
# additional parameters will be added (or overriden) during
|
||||
# the user input loop
|
||||
t2i = T2I(width=width,
|
||||
height=height,
|
||||
batch=opt.batch,
|
||||
outdir=opt.outdir,
|
||||
sampler=opt.sampler,
|
||||
weights=weights,
|
||||
config=config)
|
||||
|
||||
# gets rid of annoying messages about random seed
|
||||
logging.getLogger("pytorch_lightning").setLevel(logging.ERROR)
|
||||
|
||||
# preload the model
|
||||
t2i.load_model()
|
||||
print("\n* Initialization done! Awaiting your command...")
|
||||
|
||||
log_path = path.join(opt.outdir,"dream_log.txt")
|
||||
with open(log_path,'a') as log:
|
||||
cmd_parser = create_cmd_parser()
|
||||
main_loop(t2i,cmd_parser,log)
|
||||
log.close()
|
||||
|
||||
def main_loop(t2i,parser,log):
|
||||
while True:
|
||||
try:
|
||||
command = input("dream> ")
|
||||
except EOFError:
|
||||
print("goodbye!")
|
||||
break
|
||||
|
||||
elements = shlex.split(command)
|
||||
switches = ['']
|
||||
switches_started = False
|
||||
|
||||
for el in elements:
|
||||
if el[0]=='-' and not switches_started:
|
||||
switches_started = True
|
||||
if switches_started:
|
||||
switches.append(el)
|
||||
else:
|
||||
switches[0] += el
|
||||
switches[0] += ' '
|
||||
switches[0] = switches[0][:len(switches[0])-1]
|
||||
try:
|
||||
opt = parser.parse_args(switches)
|
||||
except SystemExit:
|
||||
parser.print_help()
|
||||
pass
|
||||
results = t2i.txt2img(**vars(opt))
|
||||
print("Outputs:")
|
||||
for r in results:
|
||||
log_message = " ".join([' ',str(r[0])+':',
|
||||
f'"{switches[0]}"',
|
||||
*switches[1:],f'-S {r[1]}'])
|
||||
print(log_message)
|
||||
log.write(log_message+"\n")
|
||||
log.flush()
|
||||
|
||||
def create_argv_parser():
|
||||
parser = argparse.ArgumentParser(description="Parse script's command line args")
|
||||
parser.add_argument("--laion400m",
|
||||
"--latent_diffusion",
|
||||
"-l",
|
||||
dest='laion400m',
|
||||
action='store_true',
|
||||
help="fallback to the latent diffusion (LAION4400M) weights and config")
|
||||
parser.add_argument('-n','--iterations',
|
||||
type=int,
|
||||
default=1,
|
||||
help="number of images to produce per sampling (overrides -n<iterations>, faster but doesn't produce individual seeds)")
|
||||
parser.add_argument('-b','--batch',
|
||||
type=int,
|
||||
default=1,
|
||||
help="number of images to produce per sampling (currently broken")
|
||||
parser.add_argument('--sampler',
|
||||
choices=['plms','ddim'],
|
||||
default='plms',
|
||||
help="which sampler to use")
|
||||
parser.add_argument('-o',
|
||||
'--outdir',
|
||||
type=str,
|
||||
default="outputs/txt2img-samples",
|
||||
help="directory in which to place generated images and a log of prompts and seeds")
|
||||
return parser
|
||||
|
||||
|
||||
def create_cmd_parser():
|
||||
parser = argparse.ArgumentParser(description="Parse terminal input in a discord 'dreambot' fashion")
|
||||
parser.add_argument('prompt')
|
||||
parser.add_argument('-s','--steps',type=int,help="number of steps")
|
||||
parser.add_argument('-S','--seed',type=int,help="image seed")
|
||||
parser.add_argument('-n','--iterations',type=int,default=1,help="number of samplings to perform")
|
||||
parser.add_argument('-b','--batch',type=int,default=1,help="number of images to produce per sampling (currently broken)")
|
||||
parser.add_argument('-W','--width',type=int,help="image width, multiple of 64")
|
||||
parser.add_argument('-H','--height',type=int,help="image height, multiple of 64")
|
||||
parser.add_argument('-C','--cfg_scale',type=float,help="prompt configuration scale (7.5)")
|
||||
parser.add_argument('-g','--grid',action='store_true',help="generate a grid")
|
||||
return parser
|
||||
|
||||
def load_history():
|
||||
histfile = path.join(path.expanduser('~'),".dream_history")
|
||||
try:
|
||||
readline.read_history_file(histfile)
|
||||
readline.set_history_length(1000)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
atexit.register(readline.write_history_file,histfile)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user