2024-07-10 16:56:09 +00:00
|
|
|
import numpy as np
|
2024-07-05 18:57:05 +00:00
|
|
|
import torch
|
2024-07-10 16:56:09 +00:00
|
|
|
from PIL import Image
|
2024-07-09 21:52:28 +00:00
|
|
|
from tqdm import tqdm
|
2024-07-05 18:57:05 +00:00
|
|
|
|
|
|
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
|
|
|
from invokeai.app.invocations.fields import (
|
|
|
|
FieldDescriptions,
|
|
|
|
ImageField,
|
|
|
|
InputField,
|
|
|
|
UIType,
|
|
|
|
WithBoard,
|
|
|
|
WithMetadata,
|
|
|
|
)
|
|
|
|
from invokeai.app.invocations.model import ModelIdentifierField
|
|
|
|
from invokeai.app.invocations.primitives import ImageOutput
|
|
|
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
|
|
|
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
|
2024-07-10 16:25:00 +00:00
|
|
|
from invokeai.backend.tiles.tiles import calc_tiles_min_overlap
|
2024-07-09 21:52:28 +00:00
|
|
|
from invokeai.backend.tiles.utils import TBLR, Tile
|
2024-07-05 18:57:05 +00:00
|
|
|
|
|
|
|
|
2024-07-09 21:52:28 +00:00
|
|
|
@invocation("spandrel_image_to_image", title="Image-to-Image", tags=["upscale"], category="upscale", version="1.1.0")
|
2024-07-05 18:57:05 +00:00
|
|
|
class SpandrelImageToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
|
|
"""Run any spandrel image-to-image model (https://github.com/chaiNNer-org/spandrel)."""
|
|
|
|
|
|
|
|
image: ImageField = InputField(description="The input image")
|
|
|
|
image_to_image_model: ModelIdentifierField = InputField(
|
|
|
|
title="Image-to-Image Model",
|
|
|
|
description=FieldDescriptions.spandrel_image_to_image_model,
|
|
|
|
ui_type=UIType.SpandrelImageToImageModel,
|
|
|
|
)
|
2024-07-09 21:52:28 +00:00
|
|
|
tile_size: int = InputField(
|
|
|
|
default=512, description="The tile size for tiled image-to-image. Set to 0 to disable tiling."
|
|
|
|
)
|
|
|
|
|
|
|
|
def _scale_tile(self, tile: Tile, scale: int) -> Tile:
|
|
|
|
return Tile(
|
|
|
|
coords=TBLR(
|
|
|
|
top=tile.coords.top * scale,
|
|
|
|
bottom=tile.coords.bottom * scale,
|
|
|
|
left=tile.coords.left * scale,
|
|
|
|
right=tile.coords.right * scale,
|
|
|
|
),
|
|
|
|
overlap=TBLR(
|
|
|
|
top=tile.overlap.top * scale,
|
|
|
|
bottom=tile.overlap.bottom * scale,
|
|
|
|
left=tile.overlap.left * scale,
|
|
|
|
right=tile.overlap.right * scale,
|
|
|
|
),
|
|
|
|
)
|
2024-07-05 18:57:05 +00:00
|
|
|
|
|
|
|
@torch.inference_mode()
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
2024-07-09 21:52:28 +00:00
|
|
|
# Images are converted to RGB, because most models don't support an alpha channel. In the future, we may want to
|
|
|
|
# revisit this.
|
|
|
|
image = context.images.get_pil(self.image.image_name, mode="RGB")
|
|
|
|
|
|
|
|
# Compute the image tiles.
|
|
|
|
if self.tile_size > 0:
|
|
|
|
min_overlap = 20
|
|
|
|
tiles = calc_tiles_min_overlap(
|
|
|
|
image_height=image.height,
|
|
|
|
image_width=image.width,
|
|
|
|
tile_height=self.tile_size,
|
|
|
|
tile_width=self.tile_size,
|
|
|
|
min_overlap=min_overlap,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
# No tiling. Generate a single tile that covers the entire image.
|
|
|
|
min_overlap = 0
|
|
|
|
tiles = [
|
|
|
|
Tile(
|
|
|
|
coords=TBLR(top=0, bottom=image.height, left=0, right=image.width),
|
|
|
|
overlap=TBLR(top=0, bottom=0, left=0, right=0),
|
|
|
|
)
|
|
|
|
]
|
|
|
|
|
2024-07-10 16:56:09 +00:00
|
|
|
# Sort tiles first by left x coordinate, then by top y coordinate. During tile processing, we want to iterate
|
|
|
|
# over tiles left-to-right, top-to-bottom.
|
|
|
|
tiles = sorted(tiles, key=lambda x: x.coords.left)
|
|
|
|
tiles = sorted(tiles, key=lambda x: x.coords.top)
|
|
|
|
|
2024-07-09 21:52:28 +00:00
|
|
|
# Prepare input image for inference.
|
|
|
|
image_tensor = SpandrelImageToImageModel.pil_to_tensor(image)
|
2024-07-05 18:57:05 +00:00
|
|
|
|
|
|
|
# Load the model.
|
|
|
|
spandrel_model_info = context.models.load(self.image_to_image_model)
|
|
|
|
|
2024-07-09 21:52:28 +00:00
|
|
|
# Run the model on each tile.
|
2024-07-05 18:57:05 +00:00
|
|
|
with spandrel_model_info as spandrel_model:
|
|
|
|
assert isinstance(spandrel_model, SpandrelImageToImageModel)
|
|
|
|
|
2024-07-09 21:52:28 +00:00
|
|
|
# Scale the tiles for re-assembling the final image.
|
|
|
|
scale = spandrel_model.scale
|
|
|
|
scaled_tiles = [self._scale_tile(tile, scale=scale) for tile in tiles]
|
|
|
|
|
2024-07-10 16:56:09 +00:00
|
|
|
# Prepare the output tensor.
|
|
|
|
_, channels, height, width = image_tensor.shape
|
|
|
|
output_tensor = torch.zeros(
|
|
|
|
(height * scale, width * scale, channels), dtype=torch.uint8, device=torch.device("cpu")
|
|
|
|
)
|
2024-07-09 21:52:28 +00:00
|
|
|
|
2024-07-10 16:56:09 +00:00
|
|
|
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
|
2024-07-10 16:25:00 +00:00
|
|
|
|
2024-07-10 16:56:09 +00:00
|
|
|
for tile, scaled_tile in tqdm(list(zip(tiles, scaled_tiles, strict=True)), desc="Upscaling Tiles"):
|
|
|
|
# Extract the current tile from the input tensor.
|
|
|
|
input_tile = image_tensor[
|
|
|
|
:, :, tile.coords.top : tile.coords.bottom, tile.coords.left : tile.coords.right
|
|
|
|
].to(device=spandrel_model.device, dtype=spandrel_model.dtype)
|
|
|
|
|
|
|
|
# Run the model on the tile.
|
|
|
|
output_tile = spandrel_model.run(input_tile)
|
|
|
|
|
|
|
|
# Convert the output tile into the output tensor's format.
|
|
|
|
# (N, C, H, W) -> (C, H, W)
|
|
|
|
output_tile = output_tile.squeeze(0)
|
|
|
|
# (C, H, W) -> (H, W, C)
|
|
|
|
output_tile = output_tile.permute(1, 2, 0)
|
|
|
|
output_tile = output_tile.clamp(0, 1)
|
|
|
|
output_tile = (output_tile * 255).to(dtype=torch.uint8, device=torch.device("cpu"))
|
|
|
|
|
|
|
|
# Merge the output tile into the output tensor.
|
|
|
|
# We only keep half of the overlap on the top and left side of the tile. We do this in case there are
|
|
|
|
# edge artifacts. We don't bother with any 'blending' in the current implementation - for most upscalers
|
|
|
|
# it seems unnecessary, but we may find a need in the future.
|
|
|
|
top_overlap = scaled_tile.overlap.top // 2
|
|
|
|
left_overlap = scaled_tile.overlap.left // 2
|
|
|
|
output_tensor[
|
|
|
|
scaled_tile.coords.top + top_overlap : scaled_tile.coords.bottom,
|
|
|
|
scaled_tile.coords.left + left_overlap : scaled_tile.coords.right,
|
|
|
|
:,
|
|
|
|
] = output_tile[top_overlap:, left_overlap:, :]
|
2024-07-05 18:57:05 +00:00
|
|
|
|
|
|
|
# Convert the output tensor to a PIL image.
|
2024-07-10 16:56:09 +00:00
|
|
|
np_image = output_tensor.detach().numpy().astype(np.uint8)
|
|
|
|
pil_image = Image.fromarray(np_image)
|
2024-07-05 18:57:05 +00:00
|
|
|
image_dto = context.images.save(image=pil_image)
|
|
|
|
return ImageOutput.build(image_dto)
|