InvokeAI/invokeai/backend/model_manager/search.py

144 lines
4.8 KiB
Python
Raw Normal View History

# Copyright 2023, Lincoln D. Stein and the InvokeAI Team
"""
Abstract base class and implementation for recursive directory search for models.
Example usage:
```
from invokeai.backend.model_manager import ModelSearch, ModelProbe
def find_main_models(model: Path) -> bool:
info = ModelProbe.probe(model)
if info.model_type == 'main' and info.base_type == 'sd-1':
return True
else:
return False
search = ModelSearch(on_model_found=report_it)
found = search.search('/tmp/models')
print(found) # list of matching model paths
print(search.stats) # search stats
```
"""
import os
from dataclasses import dataclass
from pathlib import Path
from typing import Callable, Optional
from invokeai.backend.util.logging import InvokeAILogger
@dataclass
class SearchStats:
"""Statistics about the search.
Attributes:
items_scanned: number of items scanned
models_found: number of models found
models_filtered: number of models that passed the filter
"""
items_scanned = 0
models_found = 0
models_filtered = 0
class ModelSearch:
"""Searches a directory tree for models, using a callback to filter the results.
Usage:
search = ModelSearch()
search.model_found = lambda path : 'anime' in path.as_posix()
found = search.list_models(['/tmp/models1','/tmp/models2'])
# returns all models that have 'anime' in the path
"""
def __init__(
self,
on_search_started: Optional[Callable[[Path], None]] = None,
on_model_found: Optional[Callable[[Path], bool]] = None,
on_search_completed: Optional[Callable[[set[Path]], None]] = None,
) -> None:
"""Create a new ModelSearch object.
Args:
on_search_started: callback to be invoked when the search starts
on_model_found: callback to be invoked when a model is found. The callback should return True if the model
should be included in the results.
on_search_completed: callback to be invoked when the search is completed
"""
self.stats = SearchStats()
self.logger = InvokeAILogger.get_logger()
self.on_search_started = on_search_started
self.on_model_found = on_model_found
self.on_search_completed = on_search_completed
self.models_found: set[Path] = set()
def search_started(self) -> None:
self.models_found = set()
if self.on_search_started:
self.on_search_started(self._directory)
def model_found(self, model: Path) -> None:
self.stats.models_found += 1
if self.on_model_found is None or self.on_model_found(model):
self.stats.models_filtered += 1
self.models_found.add(model)
def search_completed(self) -> None:
if self.on_search_completed is not None:
self.on_search_completed(self.models_found)
def search(self, directory: Path) -> set[Path]:
self._directory = Path(directory)
self._directory = self._directory.resolve()
self.stats = SearchStats() # zero out
self.search_started() # This will initialize _models_found to empty
self._walk_directory(self._directory)
self.search_completed()
return self.models_found
def _walk_directory(self, path: Path, max_depth: int = 20) -> None:
"""Recursively walk the directory tree, looking for models."""
absolute_path = Path(path)
2024-02-29 09:05:11 +00:00
if (
len(absolute_path.parts) - len(self._directory.parts) > max_depth
or not absolute_path.exists()
or absolute_path.parent in self.models_found
):
return
entries = os.scandir(absolute_path.as_posix())
entries = [entry for entry in entries if not entry.name.startswith(".")]
dirs = [entry for entry in entries if entry.is_dir()]
file_names = [entry.name for entry in entries if entry.is_file()]
if any(
x in file_names
for x in [
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"image_encoder.txt",
]
):
try:
self.model_found(absolute_path)
2024-02-23 20:37:51 +00:00
return
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))
return
for n in file_names:
2024-02-23 20:37:51 +00:00
if n.endswith((".ckpt", ".bin", ".pth", ".safetensors", ".pt")):
try:
self.model_found(absolute_path / n)
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))
for d in dirs:
self._walk_directory(absolute_path / d)