fix model probing for controlnet checkpoint legacy config files

This commit is contained in:
Lincoln Stein 2023-11-25 15:53:22 -05:00
parent 19baea1883
commit ec510d34b5
5 changed files with 269 additions and 23 deletions

View File

@ -127,7 +127,7 @@ class ModelInstallService(ModelInstallServiceBase):
model_path = Path(model_path)
metadata = metadata or {}
if metadata.get('source') is None:
metadata['source'] = model_path.as_posix()
metadata['source'] = model_path.resolve().as_posix()
return self._register(model_path, metadata)
def install_path(
@ -138,7 +138,7 @@ class ModelInstallService(ModelInstallServiceBase):
model_path = Path(model_path)
metadata = metadata or {}
if metadata.get('source') is None:
metadata['source'] = model_path.as_posix()
metadata['source'] = model_path.resolve().as_posix()
info: AnyModelConfig = self._probe_model(Path(model_path), metadata)
@ -366,6 +366,7 @@ class ModelInstallService(ModelInstallServiceBase):
# add 'main' specific fields
if hasattr(info, 'config'):
# make config relative to our root
info.config = self.app_config.legacy_conf_dir / info.config
legacy_conf = (self.app_config.root_dir / self.app_config.legacy_conf_dir / info.config).resolve()
info.config = legacy_conf.relative_to(self.app_config.root_dir).as_posix()
self.record_store.add_model(key, info)
return key

View File

@ -0,0 +1,30 @@
"""Re-export frequently-used symbols from the Model Manager backend."""
from .probe import ModelProbe
from .config import (
InvalidModelConfigException,
DuplicateModelException,
ModelConfigFactory,
BaseModelType,
ModelType,
SubModelType,
ModelVariantType,
ModelFormat,
SchedulerPredictionType,
AnyModelConfig,
)
from .search import ModelSearch
__all__ = ['ModelProbe', 'ModelSearch',
'InvalidModelConfigException',
'DuplicateModelException',
'ModelConfigFactory',
'BaseModelType',
'ModelType',
'SubModelType',
'ModelVariantType',
'ModelFormat',
'SchedulerPredictionType',
'AnyModelConfig',
]

View File

@ -129,7 +129,6 @@ class ModelProbe(object):
model_type = cls.get_model_type_from_folder(model_path)
else:
model_type = cls.get_model_type_from_checkpoint(model_path)
print(f'DEBUG: model_type={model_type}')
format_type = ModelFormat.Onnx if model_type == ModelType.ONNX else format_type
probe_class = cls.PROBES[format_type].get(model_type)
@ -150,14 +149,19 @@ class ModelProbe(object):
fields['original_hash'] = fields.get('original_hash') or hash
fields['current_hash'] = fields.get('current_hash') or hash
# additional work for main models
if fields['type'] == ModelType.Main:
if fields['format'] == ModelFormat.Checkpoint:
fields['config'] = cls._get_config_path(model_path, fields['base'], fields['variant'], fields['prediction_type']).as_posix()
elif fields['format'] in [ModelFormat.Onnx, ModelFormat.Olive, ModelFormat.Diffusers]:
fields['upcast_attention'] = fields.get('upcast_attention') or (
fields['base'] == BaseModelType.StableDiffusion2 and fields['prediction_type'] == SchedulerPredictionType.VPrediction
)
# additional fields needed for main and controlnet models
if fields['type'] in [ModelType.Main, ModelType.ControlNet] and fields['format'] == ModelFormat.Checkpoint:
fields['config'] = cls._get_checkpoint_config_path(model_path,
model_type=fields['type'],
base_type=fields['base'],
variant_type=fields['variant'],
prediction_type=fields['prediction_type']).as_posix()
# additional fields needed for main non-checkpoint models
elif fields['type'] == ModelType.Main and fields['format'] in [ModelFormat.Onnx, ModelFormat.Olive, ModelFormat.Diffusers]:
fields['upcast_attention'] = fields.get('upcast_attention') or (
fields['base'] == BaseModelType.StableDiffusion2 and fields['prediction_type'] == SchedulerPredictionType.VPrediction
)
model_info = ModelConfigFactory.make_config(fields)
return model_info
@ -243,18 +247,27 @@ class ModelProbe(object):
)
@classmethod
def _get_config_path(cls,
model_path: Path,
base_type: BaseModelType,
variant: ModelVariantType,
prediction_type: SchedulerPredictionType) -> Path:
def _get_checkpoint_config_path(cls,
model_path: Path,
model_type: ModelType,
base_type: BaseModelType,
variant_type: ModelVariantType,
prediction_type: SchedulerPredictionType) -> Path:
# look for a YAML file adjacent to the model file first
possible_conf = model_path.with_suffix(".yaml")
if possible_conf.exists():
return possible_conf.absolute()
config_file = LEGACY_CONFIGS[base_type][variant]
if isinstance(config_file, dict): # need another tier for sd-2.x models
config_file = config_file[prediction_type]
if model_type == ModelType.Main:
config_file = LEGACY_CONFIGS[base_type][variant_type]
if isinstance(config_file, dict): # need another tier for sd-2.x models
config_file = config_file[prediction_type]
elif model_type == ModelType.ControlNet:
config_file = "../controlnet/cldm_v15.yaml" if base_type == BaseModelType("sd-1") else "../controlnet/cldm_v21.yaml"
else:
raise InvalidModelConfigException(f"{model_path}: Unrecognized combination of model_type={model_type}, base_type={base_type}")
assert isinstance(config_file, str)
return Path(config_file)
@classmethod

View File

@ -0,0 +1,195 @@
# Copyright 2023, Lincoln D. Stein and the InvokeAI Team
"""
Abstract base class and implementation for recursive directory search for models.
Example usage:
```
from invokeai.backend.model_manager import ModelSearch, ModelProbe
def find_main_models(model: Path) -> bool:
info = ModelProbe.probe(model)
if info.model_type == 'main' and info.base_type == 'sd-1':
return True
else:
return False
search = ModelSearch(on_model_found=report_it)
found = search.search('/tmp/models')
print(found) # list of matching model paths
print(search.stats) # search stats
```
"""
import os
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Callable, Optional, Set, Union
from pydantic import BaseModel, Field
from invokeai.backend.util.logging import InvokeAILogger
default_logger = InvokeAILogger.get_logger()
class SearchStats(BaseModel):
items_scanned: int = 0
models_found: int = 0
models_filtered: int = 0
class ModelSearchBase(ABC, BaseModel):
"""
Abstract directory traversal model search class
Usage:
search = ModelSearchBase(
on_search_started = search_started_callback,
on_search_completed = search_completed_callback,
on_model_found = model_found_callback,
)
models_found = search.search('/path/to/directory')
"""
# fmt: off
on_search_started : Optional[Callable[[Path], None]] = Field(default=None, description="Called just before the search starts.") # noqa E221
on_model_found : Optional[Callable[[Path], bool]] = Field(default=None, description="Called when a model is found.") # noqa E221
on_search_completed : Optional[Callable[[Set[Path]], None]] = Field(default=None, description="Called when search is complete.") # noqa E221
stats : SearchStats = Field(default_factory=SearchStats, description="Summary statistics after search") # noqa E221
logger : InvokeAILogger = Field(default=default_logger, description="Logger instance.") # noqa E221
# fmt: on
class Config:
arbitrary_types_allowed = True
@abstractmethod
def search_started(self) -> None:
"""
Called before the scan starts.
Passes the root search directory to the Callable `on_search_started`.
"""
pass
@abstractmethod
def model_found(self, model: Path) -> None:
"""
Called when a model is found during search.
:param model: Model to process - could be a directory or checkpoint.
Passes the model's Path to the Callable `on_model_found`.
This Callable receives the path to the model and returns a boolean
to indicate whether the model should be returned in the search
results.
"""
pass
@abstractmethod
def search_completed(self) -> None:
"""
Called before the scan starts.
Passes the Set of found model Paths to the Callable `on_search_completed`.
"""
pass
@abstractmethod
def search(self, directory: Union[Path, str]) -> Set[Path]:
"""
Recursively search for models in `directory` and return a set of model paths.
If provided, the `on_search_started`, `on_model_found` and `on_search_completed`
Callables will be invoked during the search.
"""
pass
class ModelSearch(ModelSearchBase):
"""
Implementation of ModelSearch with callbacks.
Usage:
search = ModelSearch()
search.model_found = lambda path : 'anime' in path.as_posix()
found = search.list_models(['/tmp/models1','/tmp/models2'])
# returns all models that have 'anime' in the path
"""
directory: Path = Field(default=None)
models_found: Set[Path] = Field(default=None)
scanned_dirs: Set[Path] = Field(default=None)
pruned_paths: Set[Path] = Field(default=None)
def search_started(self) -> None:
self.models_found = set()
self.scanned_dirs = set()
self.pruned_paths = set()
if self.on_search_started:
self.on_search_started(self._directory)
def model_found(self, model: Path) -> None:
self.stats.models_found += 1
if not self.on_model_found:
self.stats.models_filtered += 1
self.models_found.add(model)
return
if self.on_model_found(model):
self.stats.models_filtered += 1
self.models_found.add(model)
def search_completed(self) -> None:
if self.on_search_completed:
self.on_search_completed(self._models_found)
def search(self, directory: Union[Path, str]) -> Set[Path]:
self._directory = Path(directory)
self.stats = SearchStats() # zero out
self.search_started() # This will initialize _models_found to empty
self._walk_directory(directory)
self.search_completed()
return self.models_found
def _walk_directory(self, path: Union[Path, str]) -> None:
for root, dirs, files in os.walk(path, followlinks=True):
# don't descend into directories that start with a "."
# to avoid the Mac .DS_STORE issue.
if str(Path(root).name).startswith("."):
self.pruned_paths.add(Path(root))
if any(Path(root).is_relative_to(x) for x in self.pruned_paths):
continue
self.stats.items_scanned += len(dirs) + len(files)
for d in dirs:
path = Path(root) / d
if path.parent in self.scanned_dirs:
self.scanned_dirs.add(path)
continue
if any(
(path / x).exists()
for x in [
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"image_encoder.txt",
]
):
self.scanned_dirs.add(path)
try:
self.model_found(path)
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))
for f in files:
path = Path(root) / f
if path.parent in self.scanned_dirs:
continue
if path.suffix in {".ckpt", ".bin", ".pth", ".safetensors", ".pt"}:
try:
self.model_found(path)
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))

View File

@ -1,9 +1,13 @@
#!/bin/env python
"""Little command-line utility for probing a model on disk."""
import argparse
from pathlib import Path
from invokeai.backend.model_manager.probe import ModelProbe
from invokeai.backend.model_manager import ModelProbe, InvalidModelConfigException
parser = argparse.ArgumentParser(description="Probe model type")
parser.add_argument(
@ -14,5 +18,8 @@ parser.add_argument(
args = parser.parse_args()
for path in args.model_path:
info = ModelProbe().probe(path)
print(f"{path}: {info}")
try:
info = ModelProbe.probe(path)
print(f"{path}:{info.model_dump_json(indent=4)}")
except InvalidModelConfigException as exc:
print(exc)