2023-06-17 16:20:24 +00:00
|
|
|
import os
|
2023-06-11 01:49:09 +00:00
|
|
|
import torch
|
|
|
|
from typing import Optional
|
|
|
|
from .base import (
|
|
|
|
ModelBase,
|
|
|
|
ModelConfigBase,
|
|
|
|
BaseModelType,
|
|
|
|
ModelType,
|
|
|
|
SubModelType,
|
2023-06-14 00:12:12 +00:00
|
|
|
classproperty,
|
2023-07-05 16:46:00 +00:00
|
|
|
ModelNotFoundException,
|
2023-07-08 01:09:10 +00:00
|
|
|
InvalidModelException,
|
2023-06-11 01:49:09 +00:00
|
|
|
)
|
2023-07-28 13:46:44 +00:00
|
|
|
|
2023-06-11 01:49:09 +00:00
|
|
|
# TODO: naming
|
|
|
|
from ..lora import TextualInversionModel as TextualInversionModelRaw
|
|
|
|
|
2023-07-28 13:46:44 +00:00
|
|
|
|
2023-06-11 01:49:09 +00:00
|
|
|
class TextualInversionModel(ModelBase):
|
2023-07-28 13:46:44 +00:00
|
|
|
# model_size: int
|
2023-06-11 01:49:09 +00:00
|
|
|
|
2023-06-17 14:15:36 +00:00
|
|
|
class Config(ModelConfigBase):
|
2023-06-20 00:25:08 +00:00
|
|
|
model_format: None
|
2023-06-11 01:49:09 +00:00
|
|
|
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
|
|
assert model_type == ModelType.TextualInversion
|
|
|
|
super().__init__(model_path, base_model, model_type)
|
|
|
|
|
|
|
|
self.model_size = os.path.getsize(self.model_path)
|
|
|
|
|
|
|
|
def get_size(self, child_type: Optional[SubModelType] = None):
|
|
|
|
if child_type is not None:
|
|
|
|
raise Exception("There is no child models in textual inversion")
|
|
|
|
return self.model_size
|
|
|
|
|
|
|
|
def get_model(
|
|
|
|
self,
|
|
|
|
torch_dtype: Optional[torch.dtype],
|
|
|
|
child_type: Optional[SubModelType] = None,
|
|
|
|
):
|
|
|
|
if child_type is not None:
|
|
|
|
raise Exception("There is no child models in textual inversion")
|
|
|
|
|
2023-07-05 16:46:00 +00:00
|
|
|
checkpoint_path = self.model_path
|
|
|
|
if os.path.isdir(checkpoint_path):
|
|
|
|
checkpoint_path = os.path.join(checkpoint_path, "learned_embeds.bin")
|
|
|
|
|
|
|
|
if not os.path.exists(checkpoint_path):
|
|
|
|
raise ModelNotFoundException()
|
|
|
|
|
2023-06-11 01:49:09 +00:00
|
|
|
model = TextualInversionModelRaw.from_checkpoint(
|
2023-07-05 16:46:00 +00:00
|
|
|
file_path=checkpoint_path,
|
2023-06-11 01:49:09 +00:00
|
|
|
dtype=torch_dtype,
|
|
|
|
)
|
|
|
|
|
|
|
|
self.model_size = model.embedding.nelement() * model.embedding.element_size()
|
|
|
|
return model
|
|
|
|
|
2023-06-14 00:12:12 +00:00
|
|
|
@classproperty
|
2023-06-11 01:49:09 +00:00
|
|
|
def save_to_config(cls) -> bool:
|
|
|
|
return False
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def detect_format(cls, path: str):
|
2023-07-08 01:09:10 +00:00
|
|
|
if not os.path.exists(path):
|
|
|
|
raise ModelNotFoundException()
|
|
|
|
|
|
|
|
if os.path.isdir(path):
|
|
|
|
if os.path.exists(os.path.join(path, "learned_embeds.bin")):
|
2023-07-28 13:46:44 +00:00
|
|
|
return None # diffusers-ti
|
2023-07-08 01:09:10 +00:00
|
|
|
|
|
|
|
if os.path.isfile(path):
|
2023-07-16 21:32:17 +00:00
|
|
|
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt", "bin"]]):
|
2023-07-08 01:09:10 +00:00
|
|
|
return None
|
|
|
|
|
|
|
|
raise InvalidModelException(f"Not a valid model: {path}")
|
2023-06-11 01:49:09 +00:00
|
|
|
|
2023-06-13 15:05:12 +00:00
|
|
|
@classmethod
|
|
|
|
def convert_if_required(
|
|
|
|
cls,
|
|
|
|
model_path: str,
|
|
|
|
output_path: str,
|
|
|
|
config: ModelConfigBase,
|
|
|
|
base_model: BaseModelType,
|
|
|
|
) -> str:
|
2023-06-11 01:49:09 +00:00
|
|
|
return model_path
|