InvokeAI/invokeai/app/services/shared/invocation_context.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

707 lines
26 KiB
Python
Raw Normal View History

import threading
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Union
from picklescan.scanner import scan_file_path
from PIL.Image import Image
from pydantic.networks import AnyHttpUrl
from safetensors.torch import load_file as safetensors_load_file
from torch import Tensor
from torch import load as torch_load
from invokeai.app.invocations.constants import IMAGE_MODES
2024-02-19 04:11:36 +00:00
from invokeai.app.invocations.fields import MetadataField, WithBoard, WithMetadata
from invokeai.app.services.boards.boards_common import BoardDTO
from invokeai.app.services.config.config_default import InvokeAIAppConfig
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
from invokeai.app.services.images.images_common import ImageDTO
from invokeai.app.services.invocation_services import InvocationServices
from invokeai.app.services.model_records.model_records_base import UnknownModelException
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from invokeai.backend.model_manager.config import AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
from invokeai.backend.model_manager.load.load_base import LoadedModel
from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
if TYPE_CHECKING:
from invokeai.app.invocations.baseinvocation import BaseInvocation
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.session_queue.session_queue_common import SessionQueueItem
"""
The InvocationContext provides access to various services and data about the current invocation.
We do not provide the invocation services directly, as their methods are both dangerous and
inconvenient to use.
For example:
- The `images` service allows nodes to delete or unsafely modify existing images.
- The `configuration` service allows nodes to change the app's config at runtime.
- The `events` service allows nodes to emit arbitrary events.
Wrapping these services provides a simpler and safer interface for nodes to use.
When a node executes, a fresh `InvocationContext` is built for it, ensuring nodes cannot interfere
with each other.
Many of the wrappers have the same signature as the methods they wrap. This allows us to write
user-facing docstrings and not need to go and update the internal services to match.
Note: The docstrings are in weird places, but that's where they must be to get IDEs to see them.
"""
@dataclass
class InvocationContextData:
queue_item: "SessionQueueItem"
"""The queue item that is being executed."""
invocation: "BaseInvocation"
"""The invocation that is being executed."""
source_invocation_id: str
"""The ID of the invocation from which the currently executing invocation was prepared."""
class InvocationContextInterface:
def __init__(self, services: InvocationServices, data: InvocationContextData) -> None:
self._services = services
self._data = data
class BoardsInterface(InvocationContextInterface):
def create(self, board_name: str) -> BoardDTO:
"""Creates a board.
Args:
board_name: The name of the board to create.
Returns:
The created board DTO.
"""
return self._services.boards.create(board_name)
def get_dto(self, board_id: str) -> BoardDTO:
"""Gets a board DTO.
Args:
board_id: The ID of the board to get.
Returns:
The board DTO.
"""
return self._services.boards.get_dto(board_id)
def get_all(self) -> list[BoardDTO]:
"""Gets all boards.
Returns:
A list of all boards.
"""
return self._services.boards.get_all()
def add_image_to_board(self, board_id: str, image_name: str) -> None:
"""Adds an image to a board.
Args:
board_id: The ID of the board to add the image to.
image_name: The name of the image to add to the board.
"""
return self._services.board_images.add_image_to_board(board_id, image_name)
def get_all_image_names_for_board(self, board_id: str) -> list[str]:
"""Gets all image names for a board.
Args:
board_id: The ID of the board to get the image names for.
Returns:
A list of all image names for the board.
"""
return self._services.board_images.get_all_board_image_names_for_board(board_id)
class LoggerInterface(InvocationContextInterface):
def debug(self, message: str) -> None:
"""Logs a debug message.
Args:
message: The message to log.
"""
self._services.logger.debug(message)
def info(self, message: str) -> None:
"""Logs an info message.
Args:
message: The message to log.
"""
self._services.logger.info(message)
def warning(self, message: str) -> None:
"""Logs a warning message.
Args:
message: The message to log.
"""
self._services.logger.warning(message)
def error(self, message: str) -> None:
"""Logs an error message.
Args:
message: The message to log.
"""
self._services.logger.error(message)
class ImagesInterface(InvocationContextInterface):
def save(
self,
image: Image,
board_id: Optional[str] = None,
image_category: ImageCategory = ImageCategory.GENERAL,
metadata: Optional[MetadataField] = None,
) -> ImageDTO:
"""Saves an image, returning its DTO.
If the current queue item has a workflow or metadata, it is automatically saved with the image.
Args:
image: The image to save, as a PIL image.
board_id: The board ID to add the image to, if it should be added. It the invocation \
inherits from `WithBoard`, that board will be used automatically. **Use this only if \
you want to override or provide a board manually!**
image_category: The category of the image. Only the GENERAL category is added \
to the gallery.
metadata: The metadata to save with the image, if it should have any. If the \
invocation inherits from `WithMetadata`, that metadata will be used automatically. \
**Use this only if you want to override or provide metadata manually!**
Returns:
The saved image DTO.
"""
# If `metadata` is provided directly, use that. Else, use the metadata provided by `WithMetadata`, falling back to None.
metadata_ = None
if metadata:
metadata_ = metadata
elif isinstance(self._data.invocation, WithMetadata):
metadata_ = self._data.invocation.metadata
# If `board_id` is provided directly, use that. Else, use the board provided by `WithBoard`, falling back to None.
board_id_ = None
if board_id:
board_id_ = board_id
elif isinstance(self._data.invocation, WithBoard) and self._data.invocation.board:
board_id_ = self._data.invocation.board.board_id
return self._services.images.create(
image=image,
is_intermediate=self._data.invocation.is_intermediate,
image_category=image_category,
board_id=board_id_,
metadata=metadata_,
image_origin=ResourceOrigin.INTERNAL,
workflow=self._data.queue_item.workflow,
session_id=self._data.queue_item.session_id,
node_id=self._data.invocation.id,
)
def get_pil(self, image_name: str, mode: IMAGE_MODES | None = None) -> Image:
"""Gets an image as a PIL Image object.
Args:
image_name: The name of the image to get.
mode: The color mode to convert the image to. If None, the original mode is used.
Returns:
The image as a PIL Image object.
"""
image = self._services.images.get_pil_image(image_name)
if mode and mode != image.mode:
try:
image = image.convert(mode)
except ValueError:
2024-02-19 04:11:36 +00:00
self._services.logger.warning(
f"Could not convert image from {image.mode} to {mode}. Using original mode instead."
)
return image
def get_metadata(self, image_name: str) -> Optional[MetadataField]:
"""Gets an image's metadata, if it has any.
Args:
image_name: The name of the image to get the metadata for.
Returns:
The image's metadata, if it has any.
"""
return self._services.images.get_metadata(image_name)
def get_dto(self, image_name: str) -> ImageDTO:
"""Gets an image as an ImageDTO object.
Args:
image_name: The name of the image to get.
Returns:
The image as an ImageDTO object.
"""
return self._services.images.get_dto(image_name)
class TensorsInterface(InvocationContextInterface):
def save(self, tensor: Tensor) -> str:
"""Saves a tensor, returning its name.
Args:
tensor: The tensor to save.
Returns:
The name of the saved tensor.
"""
2024-02-07 13:23:47 +00:00
name = self._services.tensors.save(obj=tensor)
return name
def load(self, name: str) -> Tensor:
"""Loads a tensor by name.
Args:
name: The name of the tensor to load.
Returns:
The loaded tensor.
"""
return self._services.tensors.load(name)
class ConditioningInterface(InvocationContextInterface):
def save(self, conditioning_data: ConditioningFieldData) -> str:
"""Saves a conditioning data object, returning its name.
Args:
conditioning_data: The conditioning data to save.
Returns:
The name of the saved conditioning data.
"""
2024-02-07 13:23:47 +00:00
name = self._services.conditioning.save(obj=conditioning_data)
return name
def load(self, name: str) -> ConditioningFieldData:
"""Loads conditioning data by name.
Args:
name: The name of the conditioning data to load.
Returns:
The loaded conditioning data.
"""
return self._services.conditioning.load(name)
class ModelsInterface(InvocationContextInterface):
def exists(self, identifier: Union[str, "ModelIdentifierField"]) -> bool:
"""Checks if a model exists.
Args:
identifier: The key or ModelField representing the model.
Returns:
True if the model exists, False if not.
"""
if isinstance(identifier, str):
return self._services.model_manager.store.exists(identifier)
return self._services.model_manager.store.exists(identifier.key)
def load(
self, identifier: Union[str, "ModelIdentifierField"], submodel_type: Optional[SubModelType] = None
) -> LoadedModel:
"""Loads a model.
Args:
identifier: The key or ModelField representing the model.
submodel_type: The submodel of the model to get.
Returns:
An object representing the loaded model.
"""
2024-02-07 23:57:01 +00:00
# The model manager emits events as it loads the model. It needs the context data to build
# the event payloads.
if isinstance(identifier, str):
model = self._services.model_manager.store.get_model(identifier)
return self._services.model_manager.load.load_model(model, submodel_type, self._data)
else:
_submodel_type = submodel_type or identifier.submodel_type
model = self._services.model_manager.store.get_model(identifier.key)
return self._services.model_manager.load.load_model(model, _submodel_type, self._data)
def load_by_attrs(
self, name: str, base: BaseModelType, type: ModelType, submodel_type: Optional[SubModelType] = None
) -> LoadedModel:
"""Loads a model by its attributes.
Args:
name: Name of the model.
base: The models' base type, e.g. `BaseModelType.StableDiffusion1`, `BaseModelType.StableDiffusionXL`, etc.
type: Type of the model, e.g. `ModelType.Main`, `ModelType.Vae`, etc.
submodel_type: The type of submodel to load, e.g. `SubModelType.UNet`, `SubModelType.TextEncoder`, etc. Only main
models have submodels.
Returns:
An object representing the loaded model.
"""
configs = self._services.model_manager.store.search_by_attr(model_name=name, base_model=base, model_type=type)
if len(configs) == 0:
raise UnknownModelException(f"No model found with name {name}, base {base}, and type {type}")
if len(configs) > 1:
raise ValueError(f"More than one model found with name {name}, base {base}, and type {type}")
return self._services.model_manager.load.load_model(configs[0], submodel_type, self._data)
def get_config(self, identifier: Union[str, "ModelIdentifierField"]) -> AnyModelConfig:
"""Gets a model's config.
Args:
identifier: The key or ModelField representing the model.
Returns:
The model's config.
"""
if isinstance(identifier, str):
return self._services.model_manager.store.get_model(identifier)
return self._services.model_manager.store.get_model(identifier.key)
def search_by_path(self, path: Path) -> list[AnyModelConfig]:
"""Searches for models by path.
Args:
path: The path to search for.
Returns:
A list of models that match the path.
"""
return self._services.model_manager.store.search_by_path(path)
def search_by_attrs(
self,
name: Optional[str] = None,
base: Optional[BaseModelType] = None,
type: Optional[ModelType] = None,
format: Optional[ModelFormat] = None,
) -> list[AnyModelConfig]:
"""Searches for models by attributes.
Args:
name: The name to search for (exact match).
base: The base to search for, e.g. `BaseModelType.StableDiffusion1`, `BaseModelType.StableDiffusionXL`, etc.
type: Type type of model to search for, e.g. `ModelType.Main`, `ModelType.Vae`, etc.
format: The format of model to search for, e.g. `ModelFormat.Checkpoint`, `ModelFormat.Diffusers`, etc.
Returns:
A list of models that match the attributes.
"""
return self._services.model_manager.store.search_by_attr(
model_name=name,
base_model=base,
model_type=type,
model_format=format,
)
def install_model(
self,
source: str,
config: Optional[Dict[str, Any]] = None,
access_token: Optional[str] = None,
inplace: Optional[bool] = False,
timeout: Optional[int] = 0,
) -> str:
"""Install and register a model in the database.
Args:
source: String source; see below
config: Optional dict. Any fields in this dict
will override corresponding autoassigned probe fields in the
model's config record.
access_token: Optional access token for remote sources.
inplace: If true, installs a local model in place rather than copying
it into the models directory
timeout: How long to wait on install (in seconds). A value of 0 (default)
blocks indefinitely
The source can be:
1. A local file path in posix() format (`/foo/bar` or `C:\foo\bar`)
2. An http or https URL (`https://foo.bar/foo`)
3. A HuggingFace repo_id (`foo/bar`, `foo/bar:fp16`, `foo/bar:fp16:vae`)
We extend the HuggingFace repo_id syntax to include the variant and the
subfolder or path. The following are acceptable alternatives:
stabilityai/stable-diffusion-v4
stabilityai/stable-diffusion-v4:fp16
stabilityai/stable-diffusion-v4:fp16:vae
stabilityai/stable-diffusion-v4::/checkpoints/sd4.safetensors
stabilityai/stable-diffusion-v4:onnx:vae
Because a local file path can look like a huggingface repo_id, the logic
first checks whether the path exists on disk, and if not, it is treated as
a parseable huggingface repo.
Returns:
Key to the newly installed model.
May Raise:
ValueError -- bad source
UnknownModelException -- remote model not found
InvalidModelException -- what was retrieved from remote is not a model
TimeoutError -- model could not be installed within timeout
Exception -- another error condition
"""
installer = self._services.model_manager.install
job = installer.heuristic_import(
source=source,
config=config,
access_token=access_token,
inplace=inplace,
)
installer.wait_for_job(job, timeout)
if job.errored:
raise Exception(job.error)
key: str = job.config_out.key
return key
def download_and_cache_ckpt(
self,
source: Union[str, AnyHttpUrl],
access_token: Optional[str] = None,
timeout: Optional[int] = 0,
) -> Path:
"""
Download the model file located at source to the models cache and return its Path.
This can be used to single-file install models and other resources of arbitrary types
which should not get registered with the database. If the model is already
installed, the cached path will be returned. Otherwise it will be downloaded.
Args:
source: A URL or a string that can be converted in one. Repo_ids
do not work here.
access_token: Optional access token for restricted resources.
timeout: Wait up to the indicated number of seconds before timing
out long downloads.
Result:
Path of the downloaded model
May Raise:
HTTPError
TimeoutError
"""
installer = self._services.model_manager.install
path: Path = installer.download_and_cache(
source=source,
access_token=access_token,
timeout=timeout,
)
return path
def load_ckpt_from_url(
self,
source: Union[str, AnyHttpUrl],
access_token: Optional[str] = None,
timeout: Optional[int] = 0,
loader: Optional[Callable[[Path], Dict[str | int, Any]]] = None,
) -> LoadedModel:
"""
Load and cache the model file located at the indicated URL.
This will check the model download cache for the model designated
by the provided URL and download it if needed using download_and_cache_model().
It will then load the model into the RAM cache. If the optional loader
argument is provided, the loader will be invoked to load the model into
memory. Otherwise the method will call safetensors.torch.load_file() or
torch.load() as appropriate to the file suffix.
Be aware that the LoadedModel object will have a `config` attribute of None.
Args:
source: A URL or a string that can be converted in one. Repo_ids
do not work here.
access_token: Optional access token for restricted resources.
timeout: Wait up to the indicated number of seconds before timing
out long downloads.
loader: A Callable that expects a Path and returns a Dict[str|int, Any]
Returns:
A LoadedModel object.
"""
ram_cache = self._services.model_manager.load.ram_cache
try:
return LoadedModel(_locker=ram_cache.get(key=str(source)))
except IndexError:
pass
def torch_load_file(checkpoint: Path) -> Dict[str | int, Any]:
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
raise Exception("The model at {checkpoint} is potentially infected by malware. Aborting load.")
return torch_load(path, map_location="cpu")
path = self.download_and_cache_ckpt(source, access_token, timeout)
if loader is None:
loader = (
torch_load_file
if path.suffix.endswith((".ckpt", ".pt", ".pth", ".bin"))
else lambda path: safetensors_load_file(path, device="cpu")
)
raw_model = loader(path)
ram_cache.put(key=str(source), model=raw_model)
return LoadedModel(_locker=ram_cache.get(key=str(source)))
class ConfigInterface(InvocationContextInterface):
def get(self) -> InvokeAIAppConfig:
"""
Gets the app's config.
Returns:
The app's config.
"""
return self._services.configuration
class UtilInterface(InvocationContextInterface):
def __init__(
self, services: InvocationServices, data: InvocationContextData, cancel_event: threading.Event
) -> None:
super().__init__(services, data)
self._cancel_event = cancel_event
def is_canceled(self) -> bool:
"""Checks if the current session has been canceled.
Returns:
True if the current session has been canceled, False if not.
"""
return self._cancel_event.is_set()
def sd_step_callback(self, intermediate_state: PipelineIntermediateState, base_model: BaseModelType) -> None:
"""
The step callback emits a progress event with the current step, the total number of
steps, a preview image, and some other internal metadata.
This should be called after each denoising step.
Args:
intermediate_state: The intermediate state of the diffusion pipeline.
base_model: The base model for the current denoising step.
"""
stable_diffusion_step_callback(
context_data=self._data,
intermediate_state=intermediate_state,
base_model=base_model,
events=self._services.events,
is_canceled=self.is_canceled,
)
class InvocationContext:
"""Provides access to various services and data for the current invocation.
Attributes:
images (ImagesInterface): Methods to save, get and update images and their metadata.
tensors (TensorsInterface): Methods to save and get tensors, including image, noise, masks, and masked images.
conditioning (ConditioningInterface): Methods to save and get conditioning data.
models (ModelsInterface): Methods to check if a model exists, get a model, and get a model's info.
logger (LoggerInterface): The app logger.
config (ConfigInterface): The app config.
util (UtilInterface): Utility methods, including a method to check if an invocation was canceled and step callbacks.
boards (BoardsInterface): Methods to interact with boards.
"""
def __init__(
self,
images: ImagesInterface,
tensors: TensorsInterface,
conditioning: ConditioningInterface,
models: ModelsInterface,
logger: LoggerInterface,
config: ConfigInterface,
util: UtilInterface,
boards: BoardsInterface,
data: InvocationContextData,
services: InvocationServices,
) -> None:
self.images = images
"""Methods to save, get and update images and their metadata."""
self.tensors = tensors
"""Methods to save and get tensors, including image, noise, masks, and masked images."""
self.conditioning = conditioning
"""Methods to save and get conditioning data."""
self.models = models
"""Methods to check if a model exists, get a model, and get a model's info."""
self.logger = logger
"""The app logger."""
self.config = config
"""The app config."""
self.util = util
"""Utility methods, including a method to check if an invocation was canceled and step callbacks."""
self.boards = boards
"""Methods to interact with boards."""
self._data = data
"""An internal API providing access to data about the current queue item and invocation. You probably shouldn't use this. It may change without warning."""
self._services = services
"""An internal API providing access to all application services. You probably shouldn't use this. It may change without warning."""
def build_invocation_context(
services: InvocationServices,
data: InvocationContextData,
cancel_event: threading.Event,
) -> InvocationContext:
"""Builds the invocation context for a specific invocation execution.
Args:
services: The invocation services to wrap.
data: The invocation context data.
Returns:
The invocation context.
"""
logger = LoggerInterface(services=services, data=data)
images = ImagesInterface(services=services, data=data)
tensors = TensorsInterface(services=services, data=data)
models = ModelsInterface(services=services, data=data)
config = ConfigInterface(services=services, data=data)
util = UtilInterface(services=services, data=data, cancel_event=cancel_event)
conditioning = ConditioningInterface(services=services, data=data)
boards = BoardsInterface(services=services, data=data)
ctx = InvocationContext(
images=images,
logger=logger,
config=config,
tensors=tensors,
models=models,
data=data,
util=util,
conditioning=conditioning,
services=services,
boards=boards,
)
return ctx